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Experimental Procedures

Chemicals. Gold chloride trihydrate (HAuCl4·3H2O, 99%), sodium borohydride (NaBH4, 98%), 

ascorbic acid (99%) and cetyltrimethylammonium chloride (CTAC) in water (25 wt%) were purchased 

from Sigma-Aldrich. cetyltrimethylammonium bromide (CTAB, 98%) was purchased from Alfa Aesar. 

Ethanol (ACS, ISO, Reag. Ph Eur) was obtained from Merck. Milli-Q water (> 18.0 MΩ. cm) was 

purified with a Sartorius Arium® 611 UV ultrapure water system. All reagents, unless otherwise stated, 

were used without further purification. 

Preparation of Small Au NS Seeds. Small Au NS seeds were synthesised via seed-mediated method1, 

in which Au3+ is reduced to Au using NaBH4 as a reducing agent. Firstly, a 0.25 mL of 0.01 M HAuCl4 

solution was made up to 10 mL with 0.1 M of CTAB solution, followed by rapid injection of 0.6 mL 

ice-cold 0.01 M NaBH4 solution under stirring. The resultant solution was gently stirred for 3 hours at 

room temperature. Subsequently, 0.12 mL of the seed solution was then injected into a growth solution 

made of 9.75 mL 0.1M CTAB, 190 mL water, 4mL 0.01M HAuCl4 and 15 mL 0.1 M ascorbic acid. 

The reaction mixture was shaken gently and left overnight at room temperature. The resultant small Au 

NS seed sample was washed and concentrated by four times by centrifugation and redispersion in water.

Preparation of Large Gold Nanospheres. Larger Au NS are synthesised by growing the smaller Au 

NS seeds into larger Au nanopolyhedrons, which are then transformed into rounded Au NS by a mild 

oxidation process in presence of HAuCl4 and CTAB. To prepare large Au nanopolyhedrons, a varying 

volume of the seed solution ranging from 0.025 mL to 4 mL was added into 30 mL of 0.025 M 

cetyltrimethylammonium chloride (CTAC) solution. For the seed solution at volumes less than 0.2mL, 

the seed solution was first diluted by four times with water. 0.75 mL of 0.1 M ascorbic acid was added 

to the mixture solution, followed by 1.5mL of 0.01 M HAuCl4. The mixture solution was placed in an  

air-bath shaker at ~ 45 °C for 3 hours. The obtained Au nanopolyhedrons were centrifuged and 

redispersed in 30 mL of 0.02 M CTAB solution. Finally, to obtain the large, rounded Au NSs, the 

prepared Au nanopolyhedrons were mildly oxidised with 0.2 mL of 0.01 M HAuCl4 solution. The  

resultant solution was kept in the air-bath shaker at 45 °C for another 2 hours. The obtained large Au 

NSs were centrifuged and redispersed in water.

TEM, SEM and UV-vis characterization of the synthesized Au NS. The extinction spectra were 

taken on an Agilent Technologies Cary 60 UV/visible spectrophotometer. The synthesized Au NSs 

were also subjected to transmission electron microscopic (TEM) imaging using JEOL JEM 1400 

electron microscope at an accelerating voltage of 120 kV and scanning electron microscopic (SEM) 

imaging using JEOL JSM-7600F Schottky field emission electron microscope at an accelerating voltage 

of 5 kV. Smaller Au NSs sized between 20 and 40 nm were imaged using TEM, while larger Au NSs 

>40 nm was visualised using SEM. Measurements were taken at 5 different spots on the TEM/SEM 

substrate containing the as-synthesized Au NSs to get a representative group of images for each sample. 
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For each sample of Au NSs, 100 randomly selected nanoparticles were measured on their TEM/SEM 

images using the ImageJ software to obtain the average Feret diameters, size distributions, and 

elongation factors (Figure S1). 

Feature engineering and model building. Feature-engineering is performed using an automated 

spectral deconvolution routine in R, with an initial guess of the peak position(s). The fitting process 

automatically adjusts the estimates to find the most optimal fit, given certain restrictions. The machine 

learning algorithms used are basis-spline (Bspline), random forest (RF), and extreme gradient boosting 

(XGB).  (Supplementary Information 2 and 4). 

If the input data are transformed based on either the dipole peak all 94 datasets will be considered, in 

which 4 will be randomly selected and set aside as training data, while the remaining 90 will be split 

into 5 (4 train 1 test) sets of 18. If both the dipole and quadrupole are required as input data, the dataset 

is reduced to 46, of which 1 set will be randomly picked and placed in the training set while the other 

45 will be split into 5 (4 train 1 test) sets of 9. With the number and types of data balanced in the 80:20 

train-test split, cross-validation is performed until all five sets have been considered as test data. The 

cycle was repeated 100 times and the mean error of all validations (80:20 train-test, cross-validation, 

100 iterations) was used as a metric of precision.

For the prediction of size, the relative squared error, , is used to calculate the mean error:𝐿1

𝐿1 = (𝑌𝑒/𝑌𝑜 ‒ 1)2,

where  is the predicted value and  is the true value.𝑌𝑒 𝑌𝑜

For the prediction of size distribution, the corresponding can vary widely (from 1.06 nm for the 𝑌𝑜

smallest Au NPs to 14.63 nm for the largest Au NPs) in our dataset and the relative error would be 

abnormally large for small nanoparticles and vice versa, skewing and inflating the mean error. Hence, 

the (absolute) squared error, , was chosen instead:𝐿2

𝐿2 = (𝑌𝑒 ‒ 𝑌𝑜)2.
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Supplementary Information 1. Additional details on particle image analysis.

The Feret diameter is a measure of a particle diameter between 2 parallel axes and the ratio between 2 

perpendicular diameters will give the elongation ratio (Figure S1).2

Figure S1 Electron microscopy of Au NS. (a) Transmission electron microscope (TEM) images of 

small Au nanospheres (25 + 1 nm) and (b) Scanning electron microscope (SEM) images of large Au 

nanospheres with examples of nanoparticle measurements. 
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Supplementary Information 2. Additional details on feature engineering

The extinction spectra are in the form of functional data while measured at finite discrete points across 

the wavelength (nm). To feed them into the machine learning algorithms, we need to process feature 

engineering to extract the key structured information from them. We perform this using Gaussian curve 

fitting (GCF) that leverages the domain knowledge to identify the pair(s) of the localized surface 

plasmon resonance (LSPR) position and the full width at half maximum (FWHM) as the key features 

(inputs of machine learning algorithms) for our predictive tasks. 

Gaussian Curve Fitting

It is known that the LSPR position (in wavelength) and the FWHM value are key indicators of the 

nanoparticle size and size distribution.3, 4 To identify them from the extinction spectrum, there are two 

noteworthy insights: 1) the extinction spectrum is bell-shaped and thus the peak and the standard 

deviation of the bell curve can serve as proxies of the LSPR position and the FWHM; 2) there could be 

two LSPRs resulting in a spectrum of a mixture of two bell curves. The first insight motivates us to 

consider GCF, while the second insight reminds us of the possibility of the mixture of Gaussian curves. 

Additional chemical domain knowledge is required to determine the number of peaks (LSPRs) in a 

spectrum and provide the initial rough estimates on the peak positions. The rule of thumb for the former 

is that nanoparticles with average size more than 120 nm normally have two LSPRs in their extinction 

spectrum.4-6 The fitting process automatically adjusts the estimates. In what follows, we elaborate the 

GCF process for two cases of one LSPR and two LSPRs.

2.1 The Case of One LSPR

Suppose that there is only one peak in the extinction spectra, which can be approximated by a Gaussian 

curve. A Gaussian curve can be described by a parametrized function  with the wavelength :𝑓(𝑥) 𝑥

𝐺(𝑥;𝑐,𝜇,𝜎) = 𝑐 ⋅ 𝑒 ‒ (𝑥 ‒ 𝜇)2/𝜎2 ,

where  is the position of the peak,  is the standard deviation of the curve that is supposedly 𝜇 𝜎

proportional to the FWHM, and  is the magnitude of the curve.𝑐

Technical details of fitting: The GCF aims to identify the parameters  for each sample curve (𝑐,𝜇, 𝜎)

that minimizes the mean of the squared error (MSE) between the sample curve and the predicted 

Gaussian curve  over a range of wavelengths. It should be noted that the extinction curves 𝐺(𝑥;𝑐,𝜇,𝜎)

were measured at discrete finite points (wavelengths), the mean is essentially the averaging in practice. 

The range of wavelength, i.e., the number of points, for calculating the errors will affect the fitting while 

reflecting the domain knowledge. We used the initial estimate of  as the center of the range and 𝜇

considered different numbers of neighbouring points which are symmetric around  to form the range 𝜇
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of wavelengths for fitting. Among the choices of 40, 80, and 120 points in our preliminary experiments, 

picking 40 points (neighbours around the center) can consistently fit the curve as well as its tip region; 

see (Figure S2). We prioritise the fitting of the tip region because it is the most relevant to the actual 

LSPR position and the FWHM. The GCF as a loss minimization problem can be solved numerically 

with the initial values of , where the initial value  is chosen as the maximum extinction value (𝑐,𝜇, 𝜎) 𝜇

of the curve and the initial values of  are chosen as some positive constants (e.g., 1). (𝑐, 𝜎)

Figure S2. Examples of the experimental data (hollow black circles) and the fitted gaussian function 

for extinction spectra of Au nanospheres of mean size of 57.83 nm when interpolated with 40 (red), 80 

(green) and 120 (blue) points between the peaks.

Following the process above, we can identify a pair of  for each sample curve. Consequently, these (𝜇, 𝜎)

two structured features can then be inputted into ML algorithms.

 

2.2 The Case of Two LSPRs

For spectra displaying a secondary quadrupole peak, we should consider the mixture of Gaussian 

curves. The corresponding fitting function comprises the sum of two Gaussian functions:

𝑚𝐺(𝑥) = 𝑐1 ⋅ 𝑒
‒ (𝑥 ‒ 𝜇1)2/𝜎2

1 + 𝑐2 ⋅ 𝑒
‒ (𝑥 ‒ 𝜇2)2/𝜎2

2,

where the parameters  and are interpreted similarly as  in the previous (𝑐1,𝜇1, 𝜎1) (𝑐2,𝜇2, 𝜎2) (𝑐,𝜇, 𝜎)

section for two different Gaussian curves.

Technical details of fitting: Similarly, the mixture of Gaussian curves fitting (mGCF) aims to identify 

the parameters  for each sample curve that minimizes the MSE between the (𝑐1,𝜇1, 𝜎1, 𝑐2,𝜇2, 𝜎2)

sample curve and the predicted mixture of Gaussian curves  over a range 𝑚𝐺(𝑥;𝑐1,𝜇1, 𝜎1, 𝑐2,𝜇2, 𝜎2)
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of wavelengths. In this case, we need rough estimates of the two peaks’ positions  while the (𝜇1,𝜇2)

initial values of  do not make a significant impact in fitting. To determine the range of (𝑐1, 𝜎1, 𝑐2, 𝜎2)

wavelength for calculating the errors, we consider the lower bound of 500 nm, which is a common 

inflection point that prompted the right bound of the first Gaussian function; see (Figure S3. The upper 

bound is selected from the set of the larger peak position shifted to the right for 20, 30, 40, 50, or 60 

points of wavelength, such that the sum of the squared errors between the sample curve and the 

predicted curve over the wavelength interval of two peaks’ positions is minimized. Here, for more 

complicated extinction spectra presenting two plasmon resonances, the same principle of preferential 

fitting of the tip regions was applied.

Figure S3. Examples of the experimental data (hollow black circles) and the fitted sum of two gaussian 

functions (red) for extinction spectra of Au nanospheres of mean sizes= (a) 128.70 nm, (b) 139.71 nm, 

(c) 159.99 nm and (d) 184.45 nm.

As a result, each of the extinction spectra with two LSPRs can be represented by , (𝜇1, 𝜎1, 𝜇2, 𝜎2)

which can also form a structured input matrix for the use of ML algorithms.

In our experiments, we separately study one-peak- and two-peak-fitting. For the former, one-peak-

fitting (GCF) is applied to all 94 data (including those with two peaks) and it does not require additional 

domain knowledge (on the peaks). Hence, in this case, each of the 94 spectra is represented by two 

features . For the latter, two-peak-fitting (mGCF) is applied only to the spectra with two clear (𝜇, 𝜎)

peaks, which normally refer to the case with mean nanoparticle size of greater than 120 nm. Hence, in 
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this case, the sample size is smaller and each of the spectra is represented by four features 

.(𝜇1, 𝜎1, 𝜇2, 𝜎2)
Supplementary Information 3. LSPR vs size and size distribution function fitting

To develop a more comprehensive and complete understanding of size-dependencies of dipole and 

quadrupole resonance peak position and FWHM, we quantitatively analyzed their correlations with 

particle size and size distributions over a very wide size range (20-220 nm). We first fit various 

functions to determine the optimal curve describing their relationships and calculate the goodness-of-

fit and errors between predicted and true values. 

Like our approach for machine learning prediction, the percentage error (%) is used to calculate the 

error for size: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 (%) =  
𝑉𝐴 ‒  𝑉𝑇

𝑉𝑇 
× 100%

Where  is the approximate (measured) value and  is the true value 𝑉𝐴 𝑉𝑇

For the calculation of the error for size distribution, the corresponding  can vary widely (from 1.06 𝑉𝑇

nm for the smallest Au NPs to 14.63 nm for the largest Au NPs) in our dataset and the percentage error 

would be abnormally large for small nanoparticles and abnormally small for larger nanoparticles, which 

will skew and inflate the value. Hence, the relative error (nm), was chosen instead:

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 (𝑛𝑚) =  𝑉𝐴 ‒  𝑉𝑇

The relationship between dipole peak position (R2 = 0.99, 5% percentage error) and particle size, is best 

represented by a sigmoid function which contrasts with the exponential trend previously reported for 

Au NSs between a smaller size range of 35-100 nm4 (Figures S5b(i), Figure S6). According to our 

results, the sigmoidal curve can be categorized into 3 stages: 1) the initial segment is approximately 

exponential (geometric) between 20-150 nm, 2) followed by a linear (arithmetic) trend between 150-

200 nm, and 3) the gradient decreases between 200-220 nm. By analyzing the dipole position of Au 

NSs beyond 100 nm, we discovered the latter two stages, which confirms that the relationship between 

dipole position and size will not follow an exponential trend indefinitely. Meanwhile, a quadratic 

function gives the best fit to describe the relationship between dipole peak FWHM and particle size (

 = 0,99, 6% percentage error) (Figures S5b(ii), Figure S6). 𝑅2

Since the LSPR positions and FWHMs are inextricably linked, they will be discussed together. Our 

results indicates that as the size of Au NSs increases beyond 20 nm, higher multipole terms that 
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incorporate the size, medium, and dielectric properties of the metal become increasingly important, 

resulting in a modest redshift in the LSPR.5, 6 Beyond 100 nm, the resonance continues to redshift but 

becomes significantly broadened due to 1) contributions from higher multipole resonances and 2) 

resonance radiative damping as the scattering cross-section increases rapidly compared to the size.5-8 

The confluence of the two factors results in a rapid rise in nanoparticle LSPR positions and FWHMs 

between 100 and 200 nm, before the magnitude of the gradient decreases between 200-220 nm when 

phase retardation effects become significant in larger nanostructures. 

Furthermore, we determine that the dipole peak position is sigmoidal-correlated (R2 =0.91, 1.27 nm 

relative error) to size distribution, while the dipole FWHM can be logit-correlated (R2 = 0.94, 1.19 nm 

relative error) to the size distribution (Figures S5b (iii and iv), Figure S7). 

Besides dipoles, larger Au NSs also display quadrupole resonance peaks. We observe that the 

quadrupole FWHM is exponentially correlated with particle size (R2=0.97), however the best fit curve 

still carries a percentage error of 8% (Figure S5b(ii), Figure S6). By correlating the LSPR features to 

the particle size and size distributions, we reveal and quantify the size and size distribution dependencies 

of these plasmon resonance modes over a wide size range (20-220 nm) and confirm their best-fit single 

function relationships. These quantitative analyses are important as they will guide the selection of 

machine learning algorithm types and architecture. 
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Figure S5. Domain-knowledge-based feature engineering and subsequent correlative analysis of 
extracted spectral features with Au NS size and size distribution, respectively. (a) Schematic 
illustration of the feature-engineering process where functional data (raw and continuous UV-Vis 
extinction spectra) is transformed into structured data consisting of LSPR peak positions and full width 
at half maximum (FWHM). (b) (i and ii) Correlation of LSPR positions and FWHMs derived from the 
automated Gaussian peak fitting routine with particle sizes. Best-fitted sigmoid, polynomial, quadratic 
and exponential functions in blue, brown, magenta and black respectively. (iii and iv) Correlation of 
LSPR positions and FWHMs with particle size distributions. Best-fitted sigmoid, exponential, logistic 
and polynomial functions in blue, black, violet and brown respectively. (c) Results of correlation 
analysis including the goodness-of-fit (R2) and percentage error (%) for size and relative error (nm) for 
size distribution using best-fit single functions.
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Figure S6. (a-b) Correlation of dipole plasmon resonance positions derived from the Gaussian fits 

with particle sizes and size distributions. Best-fit exponential, polynomial and sigmoid functions in 

red, magenta and blue respectively. (c-d) Correlation of dipole plasmon resonance FWHMs derived 

from the Gaussian fits with particle sizes and size distributions. Best-fit exponential, polynomial and 

logistic functions plotted in red, magenta, and blue respectively.
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Figure S7. (a-b) Correlation of quadrupole plasmon resonance positions derived from the Gaussian fits 

with particle sizes and size distributions. Best-fit exponential, polynomial, and linear functions in red, 

magenta and blue respectively. (c-d) Correlation of quadrupole plasmon resonance FWHMs derived 

from the Gaussian fits with particle sizes and size distributions. Best-fit exponential, polynomial and 

logistic functions plotted in red, magenta, and blue respectively.
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Supplementary Information 4. Machine learning (ML) model building

Basis-spline (Bspline) Regression

 A Bspline regression model works by generating piecewise step functions to fit different segments of 

the dataset instead of imposing an overarching linear or polynomial function as the global structure 

which makes it less prone to over- and under-fitting.7, 8  To prepare the data for a Bspline model, a 

basis function was applied to each feature (peak position or FWHM) to generate  features (where 𝑛

=degrees of freedom-3) as input data. 𝑛

Random Forest (RF)

 Random forest is an ensemble technique where a user-specified number of trees are constructed during 

the training phase and an averaged prediction of all the trees is returned, making it less prone to overfit 

compared to simple decision trees models.9, 10 For a random forest model, two parameters can be tuned- 

ntree (number of trees constructed) and mtry (number of features randomly sampled at each split) to 

affect the final accuracy. In this experiment, we fixed the ntree=1000, and varied the mtry from 1 to 4 

depending on the total number of input features. For example, when both dipole and quadrupole position 

and FWHMs are available, we can afford to sample up to 4 different features at each split (mtry=4). 

Extreme Gradient Boosting (XGB)

 Extreme gradient boosting (XGB) is another decision-tree-based ensemble machine learning 

technique that employs a gradient descent algorithm (boosting) to minimize errors in sequential 

models. Parallel processing and regularization, which considerably improve computation efficiency 

and buffer against overfitting or bias, are two additional advantages of XGB, making it a robust and 

versatile approach ideal for both classification and regression.11 For the XGB model exploration, the 

nround (number of iterations) was fixed at 25, the eta (step size or learning rate) was varied from 0.1 

to 0.5 in 0.2 increments, while the max depth (depth or trees) was varied between 1 to 10. Typically, 

the prediction results will start to stabilize at the optimal maximum depth with minimal fluctuation in 

results when the depth of trees is increased. This phenomenon is a result of regularization inherent to 

XGB which serves to shrink the learned estimated coefficients towards zero to 1) increase 

generalization of the model and 2) prevent overfitting.
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Supplementary Information 5. Model optimization results.

Figure S8. Evaluating the predictive capabilities of various machine learning algorithms in predicting 

Au nanoparticle size and size distribution using dipole peak position and FWHM as input data by 

comparing the (a) Error of prediction for (i) and (iii) nanoparticle size (%) and (ii) and (iv) size 

distribution (nm) using Bspline regression. (b) Error of prediction for (i) nanoparticle size (%) and  (ii) 

size distribution (nm) using random forest model. (c) Error of prediction for (i) nanoparticle size (%) 

and (ii) size distribution (nm) using XGB regressor.
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Figure S9. Evaluating the predictive capabilities of various machine learning algorithms in predicting 

Au nanoparticle size and size distribution using both dipole and quadrupole peak positions and/or 2 

FWHMs as input data by comparing the (a) Error of prediction for (i) and (iii) nanoparticle size (%) 

and (ii) and (iv) size distribution (nm) using Bspline regression. (b) Error of prediction for (i) 

nanoparticle size (%) and (ii) size distribution (nm) using random forest model. (c) Error of prediction 

for (i) nanoparticle size (%) and (ii) size distribution (nm) using XGB regressor.
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Supplementary Information 6. Summary tables of the best prediction results of the 3 machine-
learning algorithms 

Table S1. Best prediction results of different machine learning algorithms using one peak position and 

FWHM as input. The lowest errors are indicated in red. 

ML algorithm
Minimum relative error of size 

prediction (%)

Minimum error of size 

distribution prediction (nm)

Bspline regression 3.85 1.02

Random forest 5.04 1.11

XGBoost 4.26 1.09

Table S2. Best prediction results of different machine learning algorithms using two peak positions and 

FWHMs, for data with two peaks only as input. The lowest errors are indicated in red. 

ML algorithm
Minimum relative error of size 

prediction (%)

Minimum error of size 

distribution prediction (nm)

Bspline regression 2.52 1.15

Random forest 2.34 1.26

XGBoost 2.81 1.25
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Bspline regression using dipole features only

Table S3. Relative error of particle size (%) and error of size distribution (nm) predictions of Bspline 

regression using single variable peak position or FWHM individually as input. The lowest errors are 

indicated in red. 

Degrees of 

freedom

Relative error of 

peak position to 

size prediction 

(%)

Relative error of 

peak FWHM to 

size prediction 

(%)

Error of peak 

position to size 

distribution 

prediction (nm)

Error of peak 

FWHM to size 

distribution 

prediction (nm)

4 5.8155 20.7288 1.085046 1.044668

5 5.0330 19.1313 1.015088 1.031579

6 5.1926 20.6385 1.036172 1.058209

7 5.4081 19.7952 1.030635 1.082546

8 4.8412 19.3343 1.038474 1.088715

9 4.6827 19.7966 1.046837 1.072774

10 4.4027 20.5546 1.065320 1.114015

11 3.9655 21.0191 1.123040 1.140260

12 3.8510 21.6475 1.331572 1.108857

13 3.9043 22.3019 1.729465 1.089095

14 4.4224 22.3677 2.205546 1.188371

15 5.2374 22.0458 2.724038 1.430756

16 6.5709 21.7731 3.677463 1.716486

17 8.1240 22.2341 4.786034 2.167821

18 8.8224 23.0852 5.434744 2.628076

19 9.3949 24.5275 6.139898 3.371843

20 9.6806 26.5783 6.724159 4.454638

The prediction results from using both the peak position and FWHM as input is displayed below. 

Systematic testing by varying the degrees of freedom (4 to 20) of both inputs were conducted. Only the 

important parts of the result are shown due to space limitations. 

Table S5. Relative error of particle size (%) predictions of Bspline regression using 2 variables, 

including both peak position (first column) and FWHM (first row) as input. The lowest error is indicated 

in red. 

Degrees of 

freedom

4 5 6 7 8
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10 4.4776 4.8699 5.0642 4.8249 4.7523

11 4.3314 4.4189 4.7765 5.4014 5.7999

12 4.2715 4.2163 4.8369 6.6110 7.6173

13 4.4459 4.4161 4.9179 7.7239 8.4983

14 5.5193 5.3461 6.0622 9.6087 10.5756

Table S5. Error of particle size distribution (nm) predictions of Bspline regression using both peak 

position (first column) and FWHM (first row) as input. The lowest error is indicated in red. 

Degrees of 

freedom

4 5 6 7 8

4 1.663913 1.62835 1.687359 1.742602 1.725226

5 1.264328 1.367106 1.222653 1.318704 1.354107

6 1.256248 1.259441 1.151529 1.324534 1.559567

7 1.271100 1.254946 1.306539 1.197414 1.474128

8 1.325061 1.315125 1.208156 1.18149 1.208615
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Random Forest using dipole features only

Table S6. Relative error of particle size (%) and error of size distribution (nm) predictions of random 

forest regression using peak position and FWHM as input. The lowest errors are indicated in red. 

‘Mtry’ Relative error of size 

prediction (%)

Error of size distribution 

prediction (nm)

1 7.561 1.1083

2 5.035 1.1236
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Extreme gradient boosting algorithm using dipole features only

Table S7. Relative error of particle size (%) and error of size distribution (nm) predictions of XGB 

regression using peak position and FWHM as input. The lowest errors are indicated in red. 

Relative error of size 

prediction (%)

Error of size distribution 

prediction (nm)

Max depth

Eta=0.1 Eta=0.3 Eta=0.5

Max depth

Eta=0.1 Eta=0.3 Eta=0.5

1 15.8647 5.7870 7.0559 1 1.095994 1.100750 1.150423

2 4.7288 4.9219 5.1660 2 1.093583 1.195985 1.272854

3 4.2568 4.6450 4.9005 3 1.154843 1.255738 1.318141

4 4.2912 4.6339 4.9273 4 1.180191 1.298309 1.342922

5 4.3062 4.6325 4.9584 5 1.210222 1.316131 1.350410

6 4.3185 4.6481 4.9558 6 1.224242 1.329210 1.356862

7 4.3193 4.6500 4.9651 7 1.243565 1.341122 1.357734

8 4.3245 4.6468 4.9575 8 1.253122 1.343393 1.361938

9 4.3270 4.6513 4.9677 9 1.263490 1.350160 1.360462

10 4.3279 4.6523 4.9586 10 1.267137 1.351568 1.360523
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Bspline regression using both dipole and quadrupole features

Table S8. Relative error of particle size (%) predictions of Bspline regression using both dipole (first 

column) and quadrupole (first row) peak positions as input, for data with two peaks only. The lowest 

error is indicated in red. 

Degrees of 

freedom
4 5 6 7 8

4 4.12449 3.440235 3.511857 4.103009 5.952497

5 4.249787 3.461954 3.016202 3.540414 6.527864

6 4.017791 3.41734 2.723840 3.195863 6.821350

7 2.834473 3.230956 3.290557 4.35887 6.767945

8 9.091974 9.846198 9.657211 11.10754 11.89529

Table S9. Error of particle size distribution (nm) predictions of Bspline regression using both dipole 

(first column) and quadrupole (first row) peak positions as input, for data with two peaks only. The 

lowest error is indicated in red.

Degrees of 

freedom
4 5 6 7 8

4 1.441054 1.901171 1.740996 1.682099 2.441559

5 1.368532 1.428408 1.481865 1.489281 2.729603

6 1.449892 1.487307 1.801296 1.603756 3.167285

7 1.683162 1.755971 2.306755 2.302142 3.409261

8 4.017013 4.387913 4.290749 4.448702 4.651867

Table S10. Relative error of particle size (%) predictions of Bspline regression using both dipole (first 

column) and quadrupole (first row) peak FWHMs as input, for data with two peaks only. The lowest 

error is indicated in red.

Degrees of 

freedom
4 5 6 7 8

4 2.6857 2.8964 3.0198 3.7807 7.4930

5 2.9609 2.5164 2.8386 3.3749 6.9223

6 3.9831 2.8928 2.9433 3.7523 6.6684

7 4.1362 2.9815 3.2127 5.2364 7.4575

8 4.0094 3.3108 3.6231 4.5539 7.2538



Supporting Information

22

Table S11. Error of particle size distribution (nm) predictions of Bspline regression using both dipole 

(first column) and quadrupole (first row) peak FWHMs as input, for data with two peaks only. The 

lowest error is indicated in red.

Degrees of 

freedom
4 5 6 7 8

4 2.002933 1.863187 3.650194 5.001058 6.139825

5 1.713988 2.295165 3.616040 4.597188 5.663667

6 1.699825 2.073149 4.142663 5.127308 5.756428

7 2.148693 2.576066 4.140247 5.634330 6.172683

8 2.438475 2.862251 3.660585 4.687414 5.609820
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Random Forest using both dipole and quadrupole features

Table S12. Relative error of particle size (%) and error of size distribution (nm) predictions of random 

forest regression using both peak positions and both FWHMs as input (total 4 features), for data with 

two peaks only. The lowest errors are indicated in red.

‘Mtry’ Relative error of size 

prediction (%)

Error of size distribution 

prediction (nm)

1 2.341 1.259

2 2.362 1.274

3 2.399 1.267

4 2.410 1.264
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Extreme gradient boosting algorithm using both dipole and quadrupole features

Table S13. Relative error of particle size (%) and error of size distribution (nm) predictions of XGB 

regression using both peak positions and both FWHMs as input (total 4 features), for data with two 

peaks only. The lowest errors are indicated in red.

Relative error of size prediction 

(%)

Error of size distribution prediction 

(nm)

Max 

depth

Eta=0.1 Eta=0.3 Eta=0.5

Max 

depth

Eta=0.1 Eta=0.3 Eta=0.5

1 3.0467 2.9106 3.2096 1 1.250113 1.271958 1.328052

2 2.8089 2.8338 2.9907 2 1.266544 1.360114 1.42753

3 2.8215 2.8213 2.9356 3 1.298572 1.375809 1.435943

4 2.8273 2.8332 2.9683 4 1.299402 1.373418 1.423063

5 2.8282 2.8256 2.9467 5 1.301521 1.377703 1.421304

6 2.8281 2.8258 2.9598 6 1.297725 1.368457 1.413312

7 2.8280 2.8280 2.9627 7 1.298270 1.365655 1.415719

8 2.8282 2.8364 2.9782 8 1.294053 1.362448 1.418144

9 2.8281 2.8389 2.9786 9 1.296639 1.363365 1.421776

10 2.8281 2.8360 2.9776 10 1.298715 1.361587 1.423217
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Supplementary Information 7. Inverse prediction

Unlike the forward prediction, the inverse b-spline model predicts only (μ, σ) or , where (𝜇1, 𝜎1, 𝜇2, 𝜎2)

 is the mean which indicates the position of the peak,  is the standard deviation of the curve that is 𝜇 𝜎
proportional to the FWHM (peak width). Consequently, we use the similarity between LSPR position 
and FWHM to evalute the accuracy of inverse prediction. 

For the mathematical reconstruction of the spectra, the 2(μ, σ) or  4  predicted variables (𝜇1, 𝜎1, 𝜇2, 𝜎2)

are then substituted in the following Gaussian functions to bypass the need for c (magnitude in 
Gaussian) and only use (μ, σ) to achieve accurate predictions of position and FWHM and reconstruct 
the extinction spectra.

For single Gaussian curve:

𝐺(𝑥;𝜇,𝜎) =
1

𝜎 2𝜋
⋅ 𝑒

‒ (1(
2

𝑥 ‒ 𝜇)2

𝜎2 )
where (μ, σ) where  is the mean or position of the peak,  is the standard deviation of the curve that is 𝜇 𝜎
proportional to the FWHM (peak width).

For a mixture of Gaussian curves: 

𝑀𝐺(𝑥;𝜇1,𝜎1,  , 𝜇2,𝜎2,  ) =
1

𝜎1 2𝜋
⋅ 𝑒

‒ (1(
2

𝑥 ‒ 𝜇1)2

𝜎1
2 )

+
1

𝜎2 2𝜋
⋅ 𝑒

‒ (1(
2

𝑥 ‒ 𝜇2)2

𝜎2
2 )

Where  is interpreted similarly as (μ, σ) above. (𝜇1,𝜎1,  , 𝜇2,𝜎2,  )

The purpose is to make the inverse model more generalisable and concentration independent. This is to 
eliminate the variable c (magnitude in Gaussian) also commonly referred to as absorbance (A) of the 
extinction spectra which dependent on the concentration (C) according to the Beer-Lambert law: 

A=ɛbC

where A is the absorbance, ɛ is the molar absorptivity, b is the path length of light and C is the 
concentration. 

This is because if we take c into account, the number and permutations of c available will make the 
number of predicted curves to be astronomical to calculate and it distracts the purpose of understanding 
the 2 more important variables/parameters which is the LSPR position and FWHM. 
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Figure S10. Robust spectral regeneration based on inverse prediction. (a-d) Comparison of extinction 
spectra of specific sizes with 3 different prespecified size distributions (5, 10 and 15 nm) generated 
from our Bspline regression model with the actual experimental extinction spectra for (a) 41 ± 6 nm (b) 
109 ± 5 nm (c) 139 ± 8 nm and (d) 192 ± 10 nm Au nanospheres. (e) Quantitative comparison of peak 
features of experimental and predicted spectra.
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Example of percentage error calculation for 109 nm Au NSs containing dipole peak only, 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 (%) =  
|𝑉𝐴 ‒  𝑉𝑇|

𝑉𝑇 
× 100%

Where  is the approximate (measured) value and  is the true value.𝑉𝐴 𝑉𝑇

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝜆𝐷𝑖𝑝𝑜𝑙𝑒 (%) =
|162 ‒ 165|

165
= 2% 

x100
𝑀𝑒𝑎𝑛 𝑒𝑟𝑟𝑜𝑟 (%) =  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝜆𝐷𝑖𝑝𝑜𝑙𝑒 + 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝐹𝑊𝐻𝑀𝐷𝑖𝑝𝑜𝑙𝑒 

2

x100 =1%
=  

|584 ‒ 584|
584

+
|162 ‒ 165|

165
2
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