Electronic supplementary information

Tuning photoelectron dynamic behavior of thiolate-protected MAu₂₄

nanoclusters via heteroatom substitution

Xueke Yu,^a Yuanze Sun,^a Wen-wu Xu,^b Junyu Fan,^c Junfeng Gao,^a Xue Jiang,^a Yan

Su,*a and Jijun Zhaoa

^a Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.

^{b.} Department of Physics, School of Physical Science and Technology (Ningbo University), Ningbo 315211, China

^{c.} Department of Physics, (Taiyuan Normal University), Jinzhong 030619, China

S1. NAMD computational methods

The time-domain nonadiabatic molecular dynamics (NAMD) simulation was performed with the Hefei-NAMD code¹ to investigate the excited-electron relaxation and e-h recombination dynamics in MAu₂₄ (M = Pd, Pt, Cd, and Hg) nanoclusters. After the initial structure fully optimized at 0 K, the *ab initio* molecular dynamics (AIMD)² simulations were carried out to heat up the temperature of MAu₂₄ nanoclusters to 300 K, in which the velocity scaling algorithm was adopted to achieve thermal equilibrium. Then, a 2 ps molecular dynamics simulation was performed in the microcanonical ensemble to generate the molecular dynamics trajectory with a 1 fs time step. Due to the strong coupling between higher energy states and LUMO+1 (process er in Fig. 3b) and the quantum decoherence effect is weak enough to be ignored, the process er was calculated by the fewest switches surface hopping (FSSH)^{3,4} method. Moreover, the decoherence induced surface hopping (DISH)^{5,6} method was adopted in the relaxation from LUMO+1 to LUMO and the e-h recombination process (processes & and \bullet in Fig. 3b), since these processes have larger bandgap and quantum decoherence effect. In all simulations mentioned above, the Brillouin zones were sampled by Γ point.

		process er		process &	process •		
Systems	τ	vibrational	τ	vibrational	τ	vibrational	
	(fs)	modes (cm ⁻¹)	(ps)	modes (cm ⁻¹)	(ns)	modes (cm ⁻¹)	
PdAu ₂₄	190	50, 83, 116, 166, 217	250	33, 83	0.126	33	
PtAu ₂₄	380	50, 83, 133, 234	483	50	0.233	17, 67	
CdAu ₂₄	83	33, 100, 250, 517	86	17, 50, 117	8.03	50	
HgAu ₂₄ 35	25	33, 117, 167, 217,	120	22 67 167 217	7.55	50 100	
	267, 400, 550		33, 07, 107, 217	7.55	30, 100		

Table S1. The relaxation time (τ) and the vibrational modes coupled with the processer, &, and • for MAu₂₄ nanoclusters.

NAC (eV)	НОМО	LUMO	+1 (1)	+1 (2)	+2	+3	+4	+5	HE
НОМО	0.00	1.21	0.57	0.52	0.70	0.74	0.52	0.53	0.44
LUMO	1.21	0.00	1.32	1.12	0.80	0.71	0.73	0.67	0.66
+1(1)	0.57	1.32	0.00	25.66	2.16	1.55	1.49	1.09	1.19
+1 (2)	0.52	1.12	25.66	0.00	2.81	2.01	1.72	1.44	1.20
+2	0.70	0.80	2.16	2.81	0.00	30.22	6.76	5.11	3.65
+3	0.74	0.71	1.55	2.01	30.22	0.00	24.70	7.97	5.93
+4	0.52	0.73	1.49	1.72	6.76	24.70	0.00	41.32	11.37
+5	0.53	0.67	1.09	1.44	5.11	7.97	41.32	0.00	45.08
HE	0.44	0.66	1.19	1.20	3.65	5.93	11.37	45.08	0.00

Table S2. The average NAC elements along 2 ps NAMD trajectory between different states fromHE states to HOMO for excited-electron relaxation dynamics of PdAu24 nanoclusters.

NAC (eV)	НОМО	LUMO	+1 (1)	+1 (2)	+2	+3	+4	+5	HE
HOMO	0.00	1.48	0.66	0.63	0.63	0.77	0.52	0.50	0.45
LUMO	1.48	0.00	0.85	1.42	0.73	0.88	0.89	0.58	0.50
+1 (1)	0.66	0.85	0.00	18.97	2.50	2.14	2.92	1.59	1.22
+1 (2)	0.63	1.42	18.97	0.00	5.79	2.19	1.85	1.71	1.59
+2	0.63	0.73	2.50	5.79	0.00	32.39	7.65	6.39	4.28
+3	0.77	0.88	2.14	2.19	32.39	0.00	33.21	8.67	6.76
+4	0.52	0.89	2.92	1.85	7.66	33.21	0.00	37.77	11.25
+5	0.50	0.58	1.59	1.71	6.39	8.67	37.77	0.00	50.96
HE	0.45	0.50	1.22	1.59	4.28	6.76	11.25	50.96	0.00

Table S3. The average NAC elements along 2 ps NAMD trajectory between different states fromHE states to HOMO for excited-electron relaxation dynamics of $PtAu_{24}$ nanoclusters.

NAC (eV)	НОМО	L (1)	L (2)	+1	+2	+3	+4	+5	HE
HOMO	0.00	0.73	0.66	1.58	1.51	1.19	1.24	0.90	0.92
L (1)	0.73	0.00	16.74	1.96	1.58	1.32	1.38	1.05	1.00
L (2)	0.66	16.74	0.00	2.44	4.69	3.70	2.50	2.19	1.89
+1	1.58	1.96	2.44	0.00	25.57	4.69	3.70	2.50	2.19
+2	1.51	1.58	4.69	25.57	0.00	24.06	5.71	3.73	3.21
+3	1.19	1.32	3.70	4.69	24.06	0.00	28.02	6.80	4.20
+4	1.24	1.38	2.50	3.70	5.71	28.02	0.00	26.04	8.69
+5	0.90	1.05	2.19	2.50	3.73	6.80	26.04	0.00	43.38
HE	0.92	1.00	1.89	2.19	3.21	4.20	8.69	43.38	0.00

Table S4. The average NAC elements along 2 ps NAMD trajectory between different states fromHE states to HOMO for excited-electron relaxation dynamics of CdAu24 nanoclusters.

NAC (eV)	НОМО	L (1)	L (2)	+1	+2	+3	+4	+5	HE
HOMO	0.00	0.88	0.74	1.85	1.36	1.15	0.97	1.01	0.90
L (1)	0.88	0.00	14.98	2.10	1.43	1.12	1.06	1.21	1.00
L (2)	0.74	14.98	0.00	2.25	6.74	4.34	3.12	2.39	2.27
+1	1.85	2.10	2.25	0.00	24.84	6.74	4.34	3.12	2.39
+2	1.36	1.43	6.74	24.84	0.00	37.06	7.19	3.88	3.42
+3	1.15	1.12	4.34	6.74	37.06	0.00	32.99	6.77	4.67
+4	0.97	1.06	3.12	4.34	7.19	32.99	0.00	38.02	8.34
+5	1.01	1.21	2.39	3.12	3.88	6.77	38.02	0.00	36.97
HE	0.90	1.00	2.27	2.39	3.42	4.67	8.34	36.97	0.00

Table S5. The average NAC elements along 2 ps NAMD trajectory between different states fromHE states to HOMO for excited-electron relaxation dynamics of HgAu24 nanoclusters.

LUMO+1 (1) τ (fs) НОМО LUMO+1 (2) LUMO 0.00 5.90 HOMO 3.13 6.31 3.88 LUMO 3.13 0.00 3.81 LUMO+1 (1) 6.31 3.88 0.00 10.17 LUMO+1 (2) 5.90 3.81 10.17 0.00

Table S6. Pure-dephasing (τ) along 2 ps NAMD trajectory between the LUMO+1 and HOMO for excited-electron relaxation dynamics of PdAu₂₄ nanoclusters.

excited-electron relaxation dynamics of ready and ended sters.								
τ (fs)	НОМО	LUMO	LUMO+1 (1)	LUMO+1 (2)				
НОМО	0.00	6.38	5.11	6.84				
LUMO	6.38	0.00	4.53	5.62				
LUMO+1 (1)	5.11	4.53	0.00	9.88				
LUMO+1 (2)	6.84	5.62	9.88	0.00				

Table S7. Pure-dephasing (τ) along 2 ps NAMD trajectory between the LUMO+1 and HOMO for excited-electron relaxation dynamics of PtAu₂₄ nanoclusters.

	5	21			
τ (fs)	HOMO	LUMO(1)	LUMO (2)	LUMO+1	
НОМО	0.00	6.51	6.43	6.55	
LUMO(1)	6.51	0.00	11.11	7.57	
LUMO (2)	6.43	11.11	0.00	7.81	
LUMO+1	6.55	7.57	7.81	0.00	

Table S8. Pure-dephasing (τ) along 2 ps NAMD trajectory between the LUMO+1 and HOMO for excited-electron relaxation dynamics of CdAu₂₄ nanoclusters.

	5	0 1			
τ (fs)	НОМО	LUMO(1)	LUMO (2)	LUMO+1	
НОМО	0.00	8.56	9.58	5.05	
LUMO (1)	8.56	0.00	14.14	5.11	
LUMO (2)	9.58	14.14	0.00	5.21	
LUMO+1	5.05	5.11	5.21	0.00	

Table S9. Pure-dephasing (τ) along 2 ps NAMD trajectory between the LUMO+1 and HOMO for excited-electron relaxation dynamics of HgAu₂₄ nanoclusters.

Fig. S1 Kohn–Sham orbitals (bottom panel) and density of states (top panel) of $Au_{25}(SR)_{18}^{-}$ (R = C_2H_4Ph and H) and $Au_{25}(SR)_{18}^{0}$ from DFT calculations. The HOMO-LUMO gaps are shown in blue values.

Fig. S2 Population evolution of energy states of $PtAu_{24}$ and $HgAu_{24}$ nanoclusters during three electron relaxation processes from HE states to HOMO. The three relaxation processes include e_T relaxation from higher–energy (HE) states to LUMO+1 (a), & relaxation from LUMO+1 to LUMO (b), • e_{-h} recombination between LUMO and HOMO (c).

Fig. S3 The population evolution of relaxation states between HE–1 and LUMO+1 of MAu_{24} nanoclusters during the electron relaxation from HE states to LUMO+1.

Reference

- 1 Q. Zheng, W. Chu, C. Zhao, L. Zhang, H. Guo, Y. Wang, X. Jiang and J. Zhao, *WIREs Comput. Mol. Sci.*, 2019, **9**, e1411.
- 2 G. Kresse and J. Hafner, *Phys. Rev. B*, 1993, **47**, 558-561.
- 3 C. F. Craig, W. R. Duncan and O. V. Prezhdo, *Phys. Rev. Lett.*, 2005, 95, 163001.
- 4 J. C. Tully, J. Chem. Phys., 1990, 93, 1061-1071.
- 5 H. M. Jaeger, S. Fischer and O. V. Prezhdo, J. Chem. Phys., 2012, 137, 22A545.
- 6 D. J. Trivedi and O. V. Prezhdo, J. Phys. Chem. A, 2015, 119, 8846-8853.