Support information

Magnetic-field-controlled counterion migration within polyionic liquid micropores enables nano-energy harvest

Tao Xiao^{a,b†}, Jingyu Wang^{a,b†}, Jiahui Guo^{a,b}, Xing Zhao^a, and Yong Yan^{a,b,c*}

^aCAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence

in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China

^bUniversity of Chinese Academy of Sciences, Beijing, 100049, China

^cDepartment of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China

[†]*These authors contributed equally to this work.*

*Correspondence to: <u>yany@nanoctr.cn</u> (Y.Y.)

Fig. S1. Size distribution of PLM prepared with (**a**) 5 mg/mL, (**b**) 15 mg/mL, (**c**) 25 mg/mL, and (**d**) 45 mg/mL photoinitiator concentration. Other synthesis conditions: 3 hrs UV irradiation, 72 hrs water treatment under room temperature.

Fig. S2. Size distribution of PLM prepared with (**a**) 0.5 hrs, (**b**) 1.0 hr, (**c**) 2.0 hrs, and (**d**) 3.0 hrs UV irradiation. The other fabrication conditions are 5 mg/mL photoinitiator, and 72 hrs water treatment under room temperature.

Fig. S3. Size distribution of PLM prepared with (**a**) 24 hrs, (**b**) 48 hrs, and (**c**) 96 hrs water treatment. The other fabrication conditions are 5 mg/mL photoinitiator, and 3 hrs UV irradiation under room temperature.

Fig. S4. Size distribution of PLM prepared with (**a**) 25°C, (**b**) 20°C, (**c**) 70°C, and (**d**) 90°C water treatment temperature. The other fabrication conditions are 5 mg/mL photoinitiator, 3 hrs UV irradiation, and 12 hrs water treatment.

Fig. S5. SEM images of PLM after one week of water treatment.

Fig. S6. UV-vis spectrum of in 1-(10-mercaptodecyl)-3-methylimidazolium ferric chloride bromide.

Fig. S7. EDS mapping of Fe element within mag-PLM prepared by using MIL 1-(10-mercaptodecyl)-3-methylimidazolium ferric chloride bromide.

Fig. S8. EDS mapping of Dy element within mag-PLM prepared by using MIL 1-(10-mercaptodecyl)-3-methylimidazolium dysprosium chloride bromide.

Fig. S9. EDS mapping of Dy element within mag-PLM prepared by using MIL 1-(10-mercaptodecyl)-3-methylimidazolium dysprosium chloride bromide.

Fig. S10. Typical time-dependent short circuit current of a device fabricated by using mag-PLM synthesized with 24 hrs water treatment. The other fabrication conditions are 5 mg/mL photoinitiator, and 3 hrs UV irradiation under room temperature.

Fig. S11. Cycling (magnetic field on/off) performance of the magnetic energy harvesting device. The fabrication conditions are 5 mg/mL photoinitiator, 3 hrs UV irradiation, and 64 hrs water treatment under room temperature.

Fig. S12. NMR spectrum of poly(3-allylmethyl-1-vinylimidazole) bromide.

bis(trifluoromethanesulfonyl)imide.

Fig. S14. NMR spectrum of 1-(10-Bromodecyl)-3- Methylimidazole.

Fig. S15. NMR spectrum of 1-(10-thioethyl decyl)-3-methylimidazole bromide.

Fig. S16. NMR spectrum of 1-(10-mercaptodecyl)-3-methylimidazole bromide.

Fig. S17. Electrospray ionization mass spectrometry of 1-(10-mercaptodecyl)-3-methylimidazole nitrate.

Fig. S18. Electrospray ionization mass spectrometry of 1-(10-mercaptodecyl)-3-methylimidazolium dysprosium tetranitrate.

Fig. S19. Electrospray ionization mass spectrometry of 1-(10-mercaptodecyl)-3methylimidazolium dysprosium chloride bromide.