Electronic Supplementary Material (ESI) for Nanoscale Horizons. This journal is © The Royal Society of Chemistry 2022

## **Supporting Information**

## Theoretical Exploration of Nitrogen Fixation Mechanism of Two-dimensional Dual-Metal TM<sub>1</sub>TM<sub>2</sub>@<sub>2</sub>C<sub>9</sub>N<sub>4</sub> Electrocatalysts

Jinxin Sun,<sup>1</sup> Peng Xia,<sup>1</sup> Yuxing Lin,<sup>1</sup> Yunfan Zhang,<sup>1</sup> Anjie Chen,<sup>1</sup> Li Shi,<sup>2</sup> Yongjun Liu,<sup>1</sup> Xianghong Niu,<sup>3\*</sup> Ailei He,<sup>1\*</sup> Xiuyun Zhang<sup>1\*</sup>

<sup>1</sup>College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China

<sup>2</sup>State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications Nanjing 210023, China

<sup>3</sup>New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China

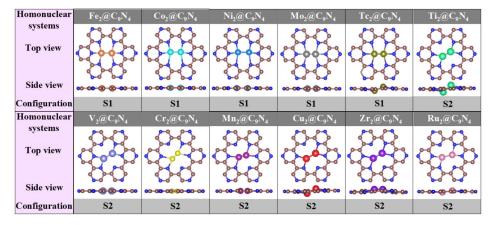



Fig. S1. The top and side view of the optimized structures of homonuclear dual-metal atom  $TM_1TM_2@C_9N_4s$ .

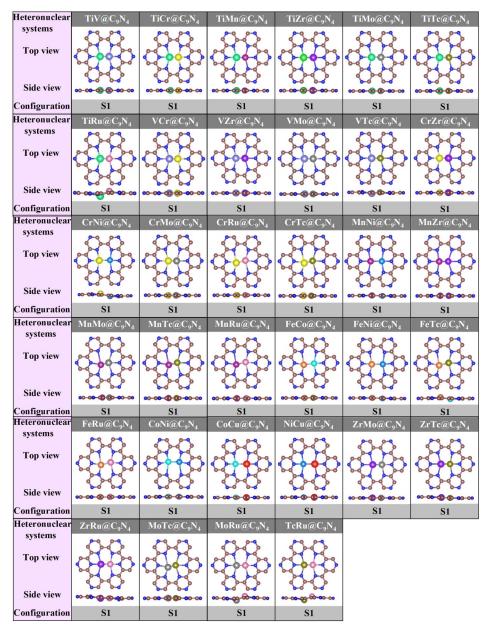



Fig. S2. Top and side view of the optimized structures of heteronuclear dual-metal atom  $TM_1TM_2@C_9N_4$  with S1 configuration.

| Heteronuclear     | TiCu@C <sub>9</sub> N <sub>4</sub>     | VCu@C <sub>9</sub> N <sub>4</sub>  | CrCu@C <sub>9</sub> N <sub>4</sub>     | MnCu@C <sub>9</sub> N <sub>4</sub>     |
|-------------------|----------------------------------------|------------------------------------|----------------------------------------|----------------------------------------|
| systems  Top view |                                        |                                    |                                        |                                        |
| Side view         | ************************************** | <del>∞∞∞∞∞</del> ∞∞                | ************************************** | ************************************** |
| Configuration     | S2                                     | S2                                 | S2                                     | S2                                     |
| Heteronuclear     | FeCu@C <sub>9</sub> N <sub>4</sub>     | CuRu@C <sub>9</sub> N <sub>4</sub> | CuMo@C <sub>9</sub> N <sub>4</sub>     | CuTc@C <sub>9</sub> N <sub>4</sub>     |
| systems           | p-q p-q                                | p-q p-q                            | p-q p-q                                | p-q p-q                                |
| Top view          |                                        |                                    |                                        |                                        |
| Side view         | ************************************** | <b>~~~</b>                         | ************************************** | ************************************** |
| Configuration     | S2                                     | S2                                 | S2                                     | S2                                     |

Fig. S3. Top and side view of the optimized structures of heteronuclear dual-metal atom  $TM_1TM_2@C_9N_4$  with S2 configuration.

| Heteronuclear         | TiFe@C <sub>9</sub> N <sub>4</sub> | TiCo@CoN4                          | TiNi@C <sub>9</sub> N <sub>4</sub> | VMn@CoN4                           | VFe@CoN4                           | VCo@CoN4                                       |
|-----------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------------------|
| systems               | · · · · · ·                        |                                    | · , ,                              |                                    | , <b>,</b>                         |                                                |
| Top view              |                                    |                                    |                                    |                                    |                                    |                                                |
| Side view             | 00-00-⊕(®-00-00                    | 0-00-00-00-00<br>0-00-00-00-00     | <del>0-00-00-00-00</del>           | <b>∞−∞−⊚⊗−∞−∞</b>                  | 0-00-00-00-00                      | <b>∞</b> • • • • • • • • • • • • • • • • • • • |
| Configuration         |                                    | S3                                 | S3                                 | S3                                 | S3                                 | S3                                             |
| Heteronuclear         | VNi@C <sub>9</sub> N <sub>4</sub>  | VRu@C <sub>9</sub> N <sub>4</sub>  | CrMn@C <sub>9</sub> N <sub>4</sub> | CrFe@C <sub>9</sub> N <sub>4</sub> | CrCo@C <sub>9</sub> N <sub>4</sub> | MnFe@C <sub>9</sub> N <sub>4</sub>             |
| systems               | م م                                | p-q p-q                            | مو مو                              | م م                                | P9 P9                              | م م                                            |
| Top view              |                                    |                                    |                                    |                                    |                                    |                                                |
| Side view             |                                    |                                    |                                    | 4242                               |                                    | 4888                                           |
| Side view             | 00-00-00-00                        | <del>00-00-@-@-00-00</del>         | <del>00-00-00-00-00</del>          | 00-00-00-00-00                     | 00-00-00-00-00                     | 00-00-10-00-00                                 |
| Configuration         | S3                                 | S3                                 | S3                                 | S3                                 | S3                                 | S3                                             |
| Heteronuclear         | MnCo@C <sub>9</sub> N <sub>4</sub> | FeZr@C <sub>9</sub> N <sub>4</sub> | FeMo@C <sub>9</sub> N <sub>4</sub> | CoZr@C <sub>9</sub> N <sub>4</sub> | CoMo@C <sub>9</sub> N <sub>4</sub> | CoRu@C <sub>9</sub> N <sub>4</sub>             |
| systems               | PQ PQ                              | p-q p-q                            | p-q p-q                            | p-q p-q                            | P-Q 0-Q                            | p-0 0-0                                        |
| Top view              |                                    |                                    |                                    |                                    |                                    |                                                |
|                       | $\bigcirc$                         | $\circ \circ$                      | $\bigcirc$                         | <b>~</b> ~                         | <b>₩</b>                           |                                                |
| Side view             | 00 00 00 00 00                     | 00 00 00 00 00                     | <del>∞ ∞ ⊗ ⊗ ∞</del> ∞             | <del>∞ ∞ ⊗ ⊚ ∞</del> ∞             | <b>∞</b> ∞ ⊗ ∞ ∞                   | 00-00-00-00-00                                 |
| Configuration         | S3                                 | S3                                 | S3                                 | S3                                 | S3                                 | S3                                             |
| Heteronuclear systems | CoTc@C <sub>9</sub> N <sub>4</sub> | NiZr@C <sub>9</sub> N <sub>4</sub> | NiMo@C <sub>9</sub> N <sub>4</sub> | NiTc@C <sub>9</sub> N <sub>4</sub> | NiRu@C <sub>9</sub> N <sub>4</sub> | CuZr@C <sub>9</sub> N <sub>4</sub>             |
| Top view              |                                    |                                    |                                    |                                    |                                    |                                                |
|                       |                                    |                                    |                                    |                                    |                                    | 8                                              |
| Side view             | 00-00-00-00-00                     | 00-00-00-00-00                     | 00-00 <del>-00</del> -00-00        | 00-00-00-00-00                     | 00 00 00 00 00                     | 00-00-0000-00-00                               |
| Configuration         | S3                                 | S3                                 | S3                                 | S3                                 | S3                                 | None                                           |

Fig. S4. Top and side view of the optimized structures of heteronuclear dual-metal atom  $TM_1TM_2@C_9N_4$  with S3 configuration.

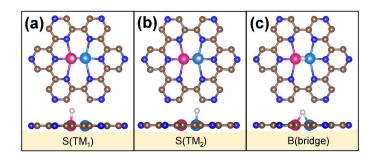



Fig. S5. Top and side views of (a)  $S_1$ , (b)  $S_2$  and (c)  $S_3$  configuration of \*H absorbed in active centers of  $TM_1TM_2@C_9N_4$ .

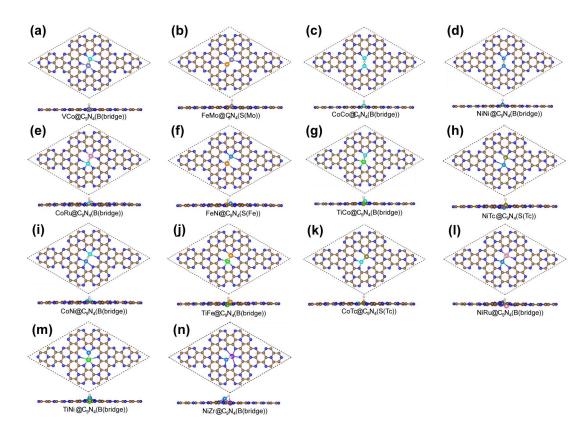



Fig. S6. Optimized geometries of H\* adsorbed on 14 TM<sub>1</sub>TM<sub>2</sub>@C<sub>9</sub>N<sub>4</sub>(TM<sub>1</sub>TM<sub>2</sub>= FeMo, VCo, CoCo, NiNi, CoRu, FeNi, TiCo, NiTc, CoNi, TiFe, CoTc, NiRu, TiNi, and NiZr). The brown, blue, pink balls represent C, N, and H atoms, respectively.

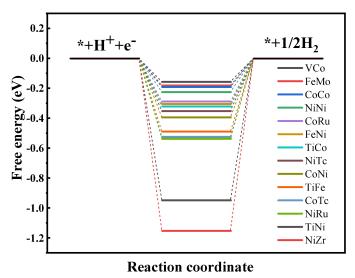



Fig. S7. Free energy diagrams of HER on TM<sub>1</sub>TM<sub>2</sub>@C<sub>9</sub>N<sub>4</sub> (TM<sub>1</sub>TM<sub>2</sub>=FeMo, VCo, CoCo, NiNi, CoRu, FeNi, TiCo, NiTc, CoNi, TiFe, CoTc, NiRu, TiNi, and NiZr).

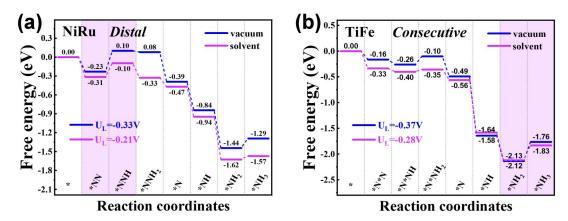



Fig. S8. Free energy diagrams of NRR on (a) NiRu@C<sub>9</sub>N<sub>4</sub>, and (b) TiFe@C<sub>9</sub>N<sub>4</sub> along distal mechanism. Blue and pink lines indicate free energy change for NRR in vacuum and solvent environment, respectively.

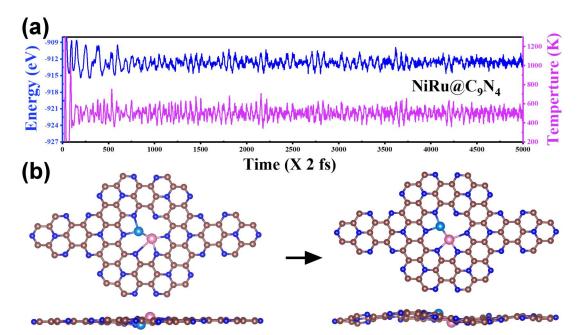



Fig. S9. (a) Variations of temperature and energy against the time for AIMD simulations of NiRu@ $C_9N_4$ . (b) top and side views of the configuration of NiRu@ $C_9N_4$  before and after AIMD simulation. The simulation was performed under 500 K for 10 ps with a time step of 2 fs.

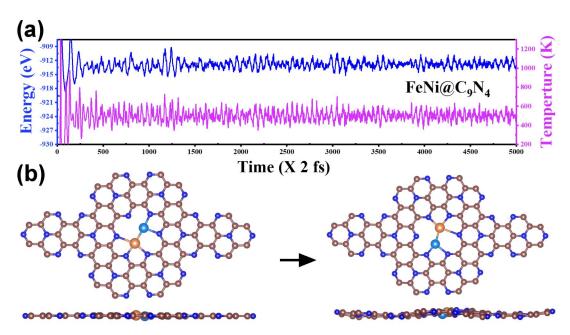



Fig. S10. (a) Variations of temperature and energy against the time for AIMD simulations of FeNi@C<sub>9</sub>N<sub>4</sub>. (b) Top and side views of the configuration of FeNi@C<sub>9</sub>N<sub>4</sub> before and after AIMD simulation. The simulation was performed under 500 K for 10 ps with a time step of 2 fs.

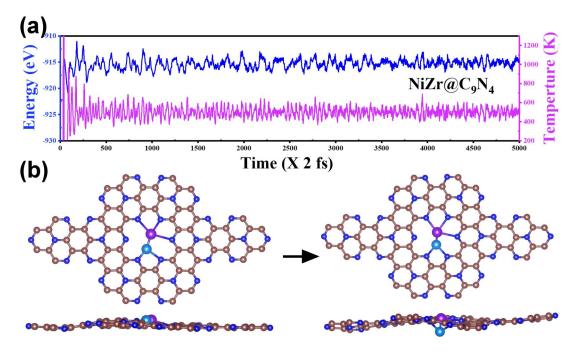



Fig. S11. (a) Variations of temperature and energy against the time for AIMD simulations of NiZr@ $C_9N_4$ . (b) Top and side views of the configuration of NiZr@ $C_9N_4$  before and after AIMD simulation. The simulation was performed under 500 K for 10 ps with a time step of 2 fs.

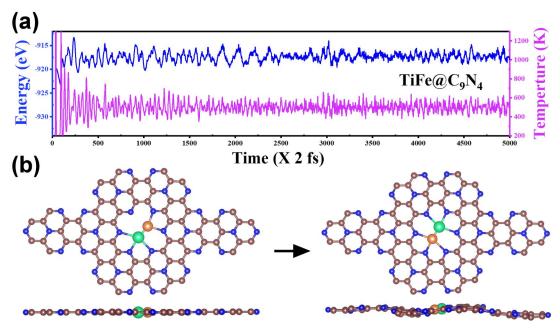



Fig. S12. (a) Variations of temperature and energy against the time for AIMD simulations of TiFe@ $C_9N_4$ . (b)Top and side views of the configuration of TiFe@ $C_9N_4$  before and after AIMD simulation. The simulation was performed under 500 K for 10 ps with a time step of 2 fs.

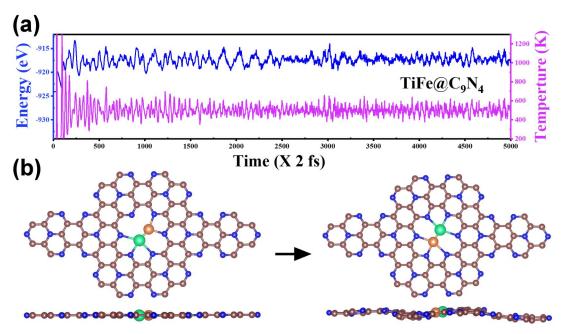



Fig. S13. (a) Variations of temperature and energy against the time for AIMD simulations of TiNi@C<sub>9</sub>N<sub>4</sub>. (b)Top and side views of the configuration of TiNi@C<sub>9</sub>N<sub>4</sub> before and after AIMD simulation. The simulation was performed under 500 K for 10 ps with a time step of 2 fs.

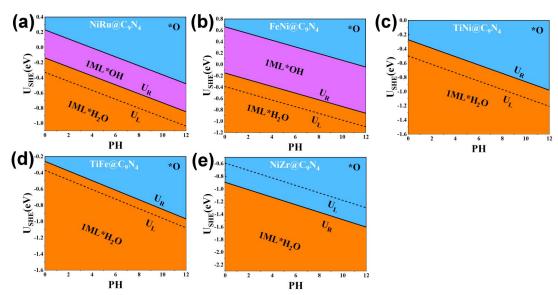



Fig. S14. Surface Pourbaix diagrams on the 5 TM<sub>1</sub>TM<sub>2</sub>@C<sub>9</sub>N<sub>4</sub> (TM<sub>1</sub>TM<sub>2</sub>=NiRu, FeNi, TiNi, TiFe, and NiZr). The thermodynamically stable states of the surface under relevant reversible hydrogen electrode (RHE) and pH values are highlighted by blue (for \*O), pink (for \*OH), and orange (for \*H2O), respectively.

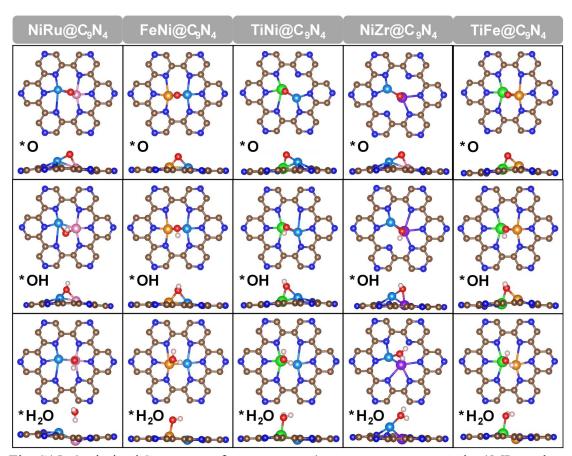



Fig. S15. Optimized Structures of oxygen atom/hydroxyl/single water at the 1ML on the 5 TM<sub>1</sub>TM<sub>2</sub>@C<sub>9</sub>N<sub>4</sub> (TM<sub>1</sub>TM<sub>2</sub>=NiRu, FeNi, TiNi, TiFe, and NiZr).