Supporting Information for

Adjacent effect between Gd(III) and Cu(II) in layered double hydroxide nanoparticles synergistically enhances T₁-weighted magnetic resonance imaging contrast

Jianping Liu,^a Li, Li,^a Run Zhang,^{*,a} Zhi Ping Xu^{*,a,b}

^a Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia.

^b Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical Biology, Shenzhen Bay Laboratory. Shenzhen, P. R. China 518107.

* Corresponding authors.

Email: gordonxu@uq.edu.au (Z. P. Xu); r.zhang@uq.edu.au (R. Zhang)

1. Supporting Figures

Fig. S1. XRD patterns of a series of Gd_x-LDH.

Fig. S2. Size distributions of a series of Gd_x-LDH.

Fig. S3. Raman spectra of a series of $Gd_xCu_{0.6}$ -LDH with the wavelength (A) 300-900 cm⁻¹ and (B) 2200-3900 cm⁻¹.

Fig. S4. SEM images of a series of Gd_xCu_{0.6}-LDH.

Fig. S5. T_1 -weight relaxation of $Gd_xCu_{0.6}$ -LDH. Plot of $1/T_1$ versus (A-E) Gd concentration and (F) Cu concentration of a series of $Gd_xCu_{0.6}$ -LDH.

Fig. S6. T_1 -weight relaxation of $Gd_{0.1}Cu_y$ -LDH. Plot of $1/T_1$ versus (A-E) Cu concentration and (F) Gd concentration of a series of $Gd_{0.1}Cu_y$ -LDH.

Fig. S7. pH-dependent MRI performance. Plot of $1/T_1$ versus Cu concentration of (A) Cu-LDH and (B) GdCu-LDH (in terms of [Cu]) after co-incubation in different pH buffer solutions for 4 h.

Fig. S8. (A) Particle size and zeta potential of GdCu-LDH and GdCu-LDH@BSA. (B) TEM image of GdCu-LDH@BSA.

Fig. S9. MRI signal intensity of Cu-LDH, Gd-LDH, GdCu-LDH and analyzed Gd-LDH + Cu-LDH at 24 h post iv injection. I₀ and I: MRI signal intensity of the mice tumors before injection and at 24 h point post injection, respectively. Grey dash line represents the background MRI signal intensity. **: p < 0.01; ***: p < 0.001.

Fig. S10. Cytotoxicity evaluation of GdCu-LDH in B16F0 cells (A) and normal cells (B).

Fig. S11. T_1 -weighted MR images of $Gd_{0.1}M_{0.6}$ -LDH (M = Mn, Co, Ni, Fe, Cu).

Fig. S12. Plot of $1/T_1$ versus Gd concentration of $Gd_{0.1}M_{0.6}$ -LDH (M = Mn, Co, Ni, Fe, Cu).

2. Supporting Tables

Table S1. Particle size, zeta potential, (003) position and element composition of Gd_x -LDH (x= 0.025, 0.05, 0.075, 0.1, and 0.15).

Samples	Size	Zeta	Position	Calculated Chemical Formula
	(nm)	(mV)	2θ (°)	
Gd _{0.025} -LDH	35.6	36.7	11.12	$Mg_{3}Al_{0.974}Gd_{0.026}(OH)_{8.0}Cl_{1.0}$
Gd _{0.05} -LDH	45.3	31.7	11.15	Mg ₃ Al _{0.948} Gd _{0.052} (OH) _{8.0} Cl _{1.0}
Gd _{0.075} -LDH	45.7	38.2	11.07	$Mg_3Al_{0.925}Gd_{0.075}(OH)_{8.0}Cl_{1.0}$
Gd _{0.1} -LDH	63.7	36.2	11.05	Mg ₃ Al _{0.898} Gd _{0.102} (OH) _{8.0} Cl _{1.0}
Gd _{0.15} -LDH	94.2	32.6	11.03	Mg ₃ Al _{0.847} Gd _{0.153} (OH) _{8.0} Cl _{1.0}

Table S	S2. Part	icle siz	ze, zeta	potential,	(003) 2	2θ value	e and	element	composition	of ($\mathrm{Gd}_{\mathrm{x}}\mathrm{Cu}_{0.6}$ -
LDH.											

Samples	Size	Zeta	Position	Calculated Chemical Formula
	(nm)	(mV)	20 (°)	
Gd _{0.025} Cu _{0.6} -LDH	50.5	36.9	11.07	$Mg_{2.46}Al_{0.974}Gd_{0.026}Cu_{0.54}(OH)_{8.0}Cl_{1.0}$
Gd _{0.05} Cu _{0.6} -LDH	52.2	39.7	11.15	$Mg_{2.42}Al_{0.948}Gd_{0.052}Cu_{0.58}(OH)_{8.0}Cl_{1.0}$
Gd _{0.075} Cu _{0.6} -LDH	56.0	30.3	11.07	$Mg_{2.45}Al_{0.925}Gd_{0.075}Cu_{0.55}(OH)_{8.0}Cl_{1.0}$
Gd _{0.1} Cu _{0.6} -LDH	58.4	34.0	11.07	$Mg_{2.42}Al_{0.898}Gd_{0.102}Cu_{0.58}(OH)_{8.0}Cl_{1.0}$
Gd _{0.15} Cu _{0.6} -LDH	129	34.8	11.01	$Mg_{2.43}Al_{0.847}Gd_{0.153}Cu_{0.57}(OH)_{8.0}Cl_{1.0}$