Supporting Information for

Thermodynamic Mechanism of Controllable Growth of Two-

Dimensional Uniformly Ordered Boron Doped Graphene

Yuansen Zhu, Xiaoshu Gong, Liang Ma*, Jinlan Wang

School of Physics, Southeast University, Nanjing 211189, China

*Email: liang.ma@seu.edu.cn

I. Derivation of Eqs. (5) and (6) in Main Text:

The chemical potential ${}^{\mu}_{C(CH_4)}$, ${}^{\mu}_{B(B_2H_6)}$ under different temperatures and pressures can be defined as follows:

$$\mu_{C(CH_4)}(T,P) \equiv G_{CH_4}(T,P) - 2G_{H_2}(T,P) = G_{CH_4}(T,P) - 4\mu_{H(H_2)}(T,P)$$

$$\mu_{B(B_2H_6)}(T,P) \equiv G_{B_2H_6}(T,P) - 3G_{H_2}(T,P) = G_{B_2H_6}(T,P) - 6\mu_{H(H_2)}(T,P) \#(S1)$$

Under any temperature and pressure, the difference of chemical potential between carbon (boron) feedstocks and graphene (B_{12}) can be defined as follows:

Defining the free energy of the carbon (boron) feedstocks from the ground state to compounds state under temperature T and pressure P:

$$\Delta_f G_{CH_4}(T,P) = G_{CH_4}(T,P) - \mu_{C(Gr)}(T,P) - 4\mu_{H(H_2)}(T,P)$$

$$\Delta_f G_{B_2H_6}(T,P) = G_{B_2H_6}(T,P) - \mu_{B(B_{12})}(T,P) - 6\mu_{H(H_2)}(T,P)^{\#(S3)}$$

Assuming that $\mu_{C(Gr)}(T,P) \approx \mu_{C(Graphite)}$, using formula (S1)(S2)(S3), it can be derived:

 $\mu_{C(Gr)}(T) = \mu_{C(Gr)}(0) + \Delta_T G_{Gr}(T)$ In particular, $\mu_{B(B_2H_6)}(T) = \mu_{B(B_{12})}(0) + \Delta_T G_{B_{12}}(T) #(S5)$

Derived from formula (S2), (S4) and (S5), we have:

$$\begin{split} \mu_{\mathcal{C}(CH_4)}(T,P) &= \mu_{\mathcal{C}(Gr)}(T) + \Delta_f G_{CH_4}(T,P) = \mu_{\mathcal{C}(Gr)}(T) + \Delta_f G_{CH_4}^0(T) + R \\ &= \mu_{\mathcal{C}(Gr)}(0) + \Delta_T G_{\mathcal{C}(Gr)}(T,P^0) + \Delta_f G_{CH_4}^0(T) + RT ln \bigg[\frac{P_{CH_4}}{P^0} \bigg] \\ \mu_{\mathcal{B}(\mathcal{B}_2\mathcal{H}_6)}(T,P) &= \mu_{\mathcal{B}(\mathcal{B}_{12})}(T) + \Delta_f G_{\mathcal{B}_2\mathcal{H}_6}(T,P) = \mu_{\mathcal{B}(\mathcal{B}_2\mathcal{H}_6)}(T) + \Delta_f G_{\mathcal{B}_2\mathcal{H}_6}^0(T) \\ & \bigg[\frac{P_{\mathcal{B}_2\mathcal{H}_6}}{P^0} \bigg(\frac{P^0}{P_{H_2}} \bigg)^2 \bigg] \\ &= \mu_{\mathcal{B}(\mathcal{B}_2\mathcal{H}_6)}(0) + \Delta_T G_{\mathcal{B}(\mathcal{B}_2\mathcal{H}_6)}(T,P^0) + \Delta_f G_{\mathcal{B}_2\mathcal{H}_6}^0(T) + RT ln \\ & \bigg[\frac{P_{\mathcal{B}_2\mathcal{H}_6}}{P^0} \bigg(\frac{P^0}{P_{H_2}} \bigg)^2 \bigg] \\ &= \mu_{\mathcal{B}(\mathcal{B}_2\mathcal{H}_6)} \bigg] \\ &= \mu_{\mathcal{B}(\mathcal{B}_2\mathcal{H}_6)} \bigg(P^0 + \Delta_T G_{\mathcal{B}(\mathcal{B}_2\mathcal{H}_6)}(T,P^0) + \Delta_f G_{\mathcal{B}_2\mathcal{H}_6}^0(T) + RT ln \\ & \bigg[\frac{P_{\mathcal{B}_2\mathcal{H}_6}}{P^0} \bigg(\frac{P^0}{P_{H_2}} \bigg)^2 \bigg] \\ &= \mu_{\mathcal{B}(\mathcal{B}_2\mathcal{H}_6)} \bigg(P^0 + \Delta_T G_{\mathcal{B}(\mathcal{B}_2\mathcal{H}_6)}(T,P^0) + \Delta_f G_{\mathcal{B}_2\mathcal{H}_6}^0(T) + RT ln \\ & \bigg[\frac{P_{\mathcal{B}_2\mathcal{H}_6}}{P^0} \bigg(\frac{P^0}{P_{H_2}} \bigg)^2 \bigg] \\ &= \mu_{\mathcal{B}(\mathcal{B}_2\mathcal{H}_6)} \bigg(P^0 + \Delta_T G_{\mathcal{B}(\mathcal{B}_2\mathcal{H}_6)}(T,P^0) + \Delta_f G_{\mathcal{B}_2\mathcal{H}_6}^0(T) + RT ln \\ & \bigg[\frac{P_{\mathcal{B}_2\mathcal{H}_6}}{P^0} \bigg(\frac{P^0}{P_{H_2}} \bigg)^2 \bigg] \\ &= \mu_{\mathcal{B}(\mathcal{B}_2\mathcal{H}_6)} \bigg(P^0 + \Delta_T G_{\mathcal{B}(\mathcal{B}_2\mathcal{H}_6)}(T,P^0) + \Delta_f G_{\mathcal{B}_2\mathcal{H}_6}^0(T) + RT ln \\ & \bigg[\frac{P_{\mathcal{B}_2\mathcal{H}_6}}{P^0} \bigg(\frac{P^0}{P_{H_2}} \bigg)^2 \bigg] \\ &= \mu_{\mathcal{B}(\mathcal{B}_2\mathcal{H}_6)} \bigg(P^0 + \Delta_T G_{\mathcal{B}(\mathcal{B}_2\mathcal{H}_6)}(T,P^0) + \Delta_T G_{\mathcal{B}(\mathcal{B}_2\mathcal{H}_6)}(T,P$$

According to the general formula of Gibbs free energy, enthalpy and entropy,

$$G(T,P) = H(T,P) - TS(T) = H^{0}(T) - TS(T) + RT ln \frac{P}{P^{0}} \#(S7)$$

After transforming (S6), we can get:

Above are the derivations of the difference between chemical potential and carbon (or

boron) in the Feedstocks and Graphene (or B_{12}) under 0 K, among which G represents free energy, T represents temperature, P_X represents the partial pressure of X and $P_0 = 0.1$ MPa represents the standard pressure.

II. The vdW interaction, formation enthalpy (ΔH) and lattice mismatch

Table S1. The calculated interfacial vdW interaction of 2D BC₃ and BC₅ on various metal substrates with rotation angles of 0° and 30° . (N/A means the relevant lattice parameters are too large to be calculated)

System	E_{vdW} of 0° $$ (eV per atom)	$E_{vdW} of 30^\circ $ (eV per atom)
BC ₃ @Cu(111)	-0.256	-0.229
BC ₅ @Cu(111)	-0.290	-0.272
BC ₃ @Cu(110)	-0.265	-0.257
BC5@Cu(110)	-0.268	-0.259
BC ₃ @Ag(111)	-0.173	-0.159
BC5@Ag(111)	-0.182	-0.161
BC ₃ @Ag(110)	-0.154	-0.150
BC5@Ag(110)	-0.187	-0.185
BC ₃ @Au(111)	-0.109	-0.106
BC ₅ @Au(111)	-0.114	-0.108
BC ₃ @Au(110)	-0.158	-0.154
BC ₅ @Au(110)	-0.184	-0.155
BC ₃ @Ir(111)	-0.372	-0.357
BC ₅ @Ir(111)	-0.325	N/A
BC ₃ @Ir(110)	-0.425	-0.421
BC ₅ @Ir(110)	-0.423	-0.411

Table S2. The formation enthalpy (per atom) and lattice mismatch of BC₃ and BC₅ on various metal surfaces, where $B_x C_y @sub$ represent the 2D B-G placed on the corresponding substrates.

System	ΔH (eV/atom)	Lattice mismatch (%)
BC ₃ @Cu(111)	-0.90	1.45
BC5@Cu(111)	-0.37	3.11
BC ₃ @Cu(110)	-0.96	a: 0.12, b:1.90
BC5@Cu(110)	-1.10	a: 1.88, b: 0.17
BC ₃ @Ag(111)	-0.23	3.77
BC ₅ @Ag(111)	-0.44	1.99
BC ₃ @Ag(110)	-0.45	a: 2.12, b: 2.76
BC5@Ag(110)	-0.66	a: 3.81, b: 0.60
BC ₃ @Au(111)	-0.16	2.94
BC ₅ @Au(111)	-0.13	1.21
BC ₃ @Au(110)	-0.16	a: 2.99, b: 1.91
BC ₅ @Au(110)	-0.24	a: 4.58, b: 1.35
BC ₃ @Ir(111)	-1.40	1.05
BC ₅ @Ir(111)	-1.17	2.76
BC ₃ @Ir(110)	-1.62	a: 0.03, b: 4.79
BC ₅ @Ir(110)	-0.39	a: 4.48, b: 2.07

III. The lattice parameters

Structure	Lattice Parameters (Å)
BC ₃	5.17
BC_5	4.40
BC ₃ -square	a=8.96 b=5.17
BC ₅ -square	a=7.62 b=4.40
Cu(111)	2.52
Ag(111)	2.88
Au(111)	2.90
Ir(111)	2.72
Cu(110)	a=357 b=254
Ag(110)	a=4.07 b=2.88
Au(110)	a=4.10 b=2.90
Ir(110)	a=3.84 b=2.71

Table S3. Lattice constants of BC_3 , BC_5 and involved metal surfaces.

IV. Supplementary figures of the thermodynamic phase diagram of BC₃ and BC₅ in vacuum and on distinct surfaces.

Figure S1. Thermodynamic phase diagrams of 2D B-G in vacuum. The chemical potential ranges which favor the formation of 2D B-G are painted in pink and blue, respectively. The horizontal and vertical dashed lines denote the chemical potential of suspended B_{12} molecules and graphene, respectively.

Figure S2. Thermodynamic phase diagrams of 2D B-G on two typical C_{2V} surfaces (a)Ir(110), (d)Au(110) and two C_{6V} surfaces (b)Au(111), (c)Ag(111). The chemical potential range for stable selective growth of 2D B-G are plotted. The coordinates of the intersection of the critical lines of distinct 2D B-G are denoted by arrows. The horizontal and vertical dashed lines signify B_{12} molecules and graphene on various substrates, respectively.

V. Optimized 2D B-G structure diagram on distinct surfaces

Figure S3. Top and perspective view of BC_3 on (a) Cu(111), (b) Ag(111), (c) Au(111), (d) Ir(111).

Figure S4. Top and perspective view of BC_3 on (a) Cu(110), (b) Ag(110), (c) Au(110), (d) Ir(110).

Figure S5. Top and perspective view of BC_5 on (a) Cu(111), (b) Ag(111), (c) Au(111), (d) Ir(111).

Figure S6. Top and perspective view of BC_5 on (a) Cu(110), (b) Ag(110), (c) Au(110), (d) Ir(110).