Supporting Information for

Nonvolatile Electro-Mechanical Coupling in Two-Dimensional Lattices

Xilong Xu, Ting Zhang, Ying Dai, * Baibiao Huang, Yandong Ma*
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China

E-mail: daiy60@sina.com; yandong.ma@sdu.edu.cn

Fig. S1 Crystal structure of SL ReIrGe ${ }_{2} \mathrm{~S}_{6}$ from top and side views.

Fig. S2 Variation of total energy during AIMD ($300 \mathrm{~K}, 3 \mathrm{ps}$) simulations. Inset is crystal structure of $\mathrm{SL}^{\operatorname{ReIrGe}} \mathrm{C}_{2} \mathrm{~S}_{6}$ taken from the end of AIMD.
(a)

(b)

(c)

(d)

(e)

(f)

Fig. S3 Structure generation during CI-NEB for bilayer $\mathrm{MoS}_{2} / \operatorname{ReIrGe}_{2} \mathrm{~S}_{6}$. Yellow, blue, gray, brown, and purple spheres represent $\mathrm{S}, \mathrm{Ge}, \mathrm{Re}, \mathrm{Ir}$, and Mo atoms, respectively.

Fig. S4 (a-b) Band structures of $\mathrm{MoS}_{2} / \operatorname{ReIrGe}_{2} \mathrm{~S}_{6}$ bilayer with $\mathrm{P} \uparrow$ and $\mathrm{P} \downarrow$.

Fig. S5 (a-b) Band structures with SOC of $\mathrm{MoS}_{2} / \operatorname{ReIrGe}_{2} \mathrm{~S}_{6}$ bilayer with $\mathrm{P} \uparrow$ and $\mathrm{P} \downarrow$.

Fig. S6 The charge density difference of $\mathrm{Sb} / \mathrm{In}_{2} \mathrm{Se}_{3}$ bilayer under $\mathrm{P} \uparrow$ and $\mathrm{P} \downarrow$. The isosurface value is set to 0.02 electrons per \AA^{3}.
(a)

(b)

(d)

(e)

Fig. S7 Structure generation during CI-NEB for bilayer $\mathrm{Sb} / \mathrm{In}_{2} \mathrm{Se}_{3}$. Brown, green, and purple spheres represent Sb, Se, and In atoms, respectively.

Fig. S8 Minimum energy pathway of FE switching as a function of step number within NEB for $\mathrm{Sb} / \mathrm{In}_{2} \mathrm{Se}_{3}$ bilayer.
(a)

(b)

Fig. S9 (a-b) Crystal structures of $\mathrm{PdTe}_{2} / \mathrm{In}_{2} \mathrm{Se}_{3}$ bilayer under $\mathrm{P} \uparrow$ and $\mathrm{P} \downarrow$ configurations. Orange, blue, yellow and brown spheres represent $\mathrm{Te}, \mathrm{Pd}, \mathrm{Se}$ and In atoms, respectively. (c-d) Band structures of $\mathrm{PdTe}_{2} / \mathrm{In}_{2} \mathrm{Se}_{3}$ bilayer under $\mathrm{P} \uparrow$ and $\mathrm{P} \downarrow$ configurations.
(a)

(b)

(c)

$a \sigma^{a} \sigma^{a} 0$
$0 \sigma^{2} \sigma^{2}$

$$
\begin{aligned}
& \sigma^{2} \sigma^{2} 0 \\
& 00
\end{aligned}
$$

(d)

$\sigma_{0}^{0} 0_{0}^{\infty} 0$
$a \sigma^{a} \sigma^{a}=$
$a_{0}^{a} \sigma^{2}$
$\sum_{0}^{a} \sigma^{2} 0_{0}^{0} 0$

Fig. S10 Structure generation and Minimum energy pathway of FE switching for bilayer $\operatorname{In}_{2} \operatorname{Se}_{3}$. (a) From $\mathrm{P} \uparrow \uparrow$ to $\mathrm{P} \uparrow \downarrow$. (b) From $\mathrm{P} \uparrow \uparrow$ to $\mathrm{P} \downarrow \uparrow$. (c) From $\mathrm{P} \uparrow \uparrow$ to $\mathrm{P} \downarrow \downarrow$. (d) From $\mathrm{P} \downarrow \uparrow$ to $\mathrm{P} \uparrow \downarrow$. Green, and purple spheres represent Sb, Se, and In atoms, respectively.

Fig. S11 Plane-averaged potential of bilayer $\mathrm{In}_{2} \mathrm{Se}_{3}$ along z direction under (a) $\mathrm{P} \uparrow \uparrow$, (b) $\mathrm{P} \uparrow \downarrow$ and (c) $\mathrm{P} \downarrow \uparrow$ configurations.

