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Methods

Training of the GAP potential

Training procedure The GAP potential is trained and validated using two distinct

datasets, called "training" and "validation" databases, respectively.1–4 Each of the datasets

contains a sufficiently large set of atomic energies, forces and stresses derived by DFT cal-

culations and ab-initio MD simulations. The training set is quite large and includes both

results from DFT and ab-initio MD simulations to include the instrinsic randomness which

enhance the performance of ML process.5,6

The training of the potential is realized through a multi-step procedure in which the training

database is gradually enlarged. Initially, a) a training dataset of energies, forces and stresses

is built using atomistic structures generated using ab-initio Molecular Dynamics and b) a

first GAP potential is trained; c) using the previously trained potential several new atomistic

structures are generated using classical MD and their energies and forces are consequently

evaluated using DFT calculations. d) A new GAP potential is subsequently trained on the

new larger dataset and validated. These steps are cyclically repeated several times until

sufficient accuracy in the potential predictions is reached.

The training and validation sets were initially populated with energies and forces extracted

on a set of atomistic srtuctures of C-doped amorphous boron nitride with a variable concen-

tration of carbon atoms, Boron Nitride in its amorphous and crystalline phases and carbon

polymorphs. Specifically, several atomistic samples were generated corresponding to different

phases of C-doped boron nitride and simple carbon at different densities and temperatures:

crystalline h-BN, amorphous boron nitride with variable Carbon content (from 0% to 80%),

amorphous carbon, graphene, graphite and diamond. The configurations of amorphous sam-

ples are characterized by a wide range of densities, from 1.0g/cm3 to 3.5g/cm3. Furthermore,

several samples were generated corresponding to distinct molecular configurations involving

B, N and C chemical species (C2, N2, CN2, C2N2, C3N4, B4C, B4C2, B4C3). Finally, the
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isolated atoms of C, B and N were also added to the training database.

The final training dataset contains a number of different atomistic configurations as large

as 2300 yielding a number of local environments as large as 84000. Final validation set has

2000 different structures.

DFT calculations The first-principles calculations have been performed using the DFT

code as implemented in the Quantum ESPRESSO package7–9with PBE exchange-correlation

functional10 and Projector augmented wave (PAW) pseudopotentials. We used energy cut-

offs of 75 Ry and 600 Ry for the wavefunction and electronic density, respectively. Periodic

boundary conditions are generally applied to the cell with the Brillouin zone sampled at the

Γ point. When systems have been relaxed, relaxation steps were performed until all the

atomic forces were smaller than 0.001 a.u. In all the calculations, we used the electronic free

energy as the energy to be predicted, whose derivatives yield the atomic forces according to

the Hellman-Feynman theorem.

The ab-initio molecular dynamics calculations were performed using the Car-Parrinello CP

package implemented in Quantum ESPRESSO under a different set of parameters. In par-

ticular, UltraSoft Pseudo potentials have been used with a LDA as exchange-correlation

functional;11 a kinetic energy cutoff for wavefunctions and energy have been set to 150 Ry

and 20 Ry cutoff, respectively.

Training the GAP potential The training database was employed to build a GAP

potential using the quippy code (www.libatoms.org) with the parameters as summarized

in table 1: the columns refer to the 2-body, 3-body and the Smooth Overlap of Atomic

Positions (SOAP)2 descriptors, respectively. The latter has been recently introduced to

model the many-body interactions and has proved useful in the generation of GAP models

for tungsten, amorphous Carbon and Silicon.12–15 For the meaning of the reported values and

the mathematical framework of the GAP potential we refer to Ref.16 Moreover, regularization

parameters for expected errors on energies and forces were set to 0.002 eV and 0.2 eV/ Å,

3



respectively. Finally, sparsification with the CUR method17 has been adopted for the SOAP

kernel while sparsification on a uniform grid has been the choice for the 2-body and 3-body

terms.

Table 1: Parameters used to train the GAP potential for C-doped a-BN.

2-body 3-body SOAP
δ (eV) 2.0 0.1 0.1
rcut ( Å) 3.7 3.0 3.7
r∆ ( Å) 0.5
σat ( Å) 0.5
nmax, lmax 8

ζ 4
Sparsification Uniform Uniform CUR

Nt (a C-BN bulk) 150 2000
Nt (crystalline samples) 50 500

Nt (total) 15 200 2500

Validation of the GAP potential In order to assess the quality of the trained GAP for

future predictions on C-doped BN samples, we compared the energies per atom and forces

obtained with the GAP with the exact values from DFT calculations. Fig. 1 shows the

scatterplots of the mentioned values from DFT and from the GAP potentials as computed

on the training and validation datasets. A significantly small value for the Root Mean

Squared Error (RMSE) is found in all the training data, slightly increasing on the validation

set (since the latter has not been used to train the potential). The overall agreement is

consequently good and no trace of overfitting is observed.

Fig. 2 shows the statistical distribution of the errors on the energies (absolute value) and

forces (left and right top panels). The corresponding cumulative functions are also shown in

the corresponding bottom panels.

As a final validation step of the GAP potential, we assessed the capability of the GAP

potential to allow for the generation of atomistic samples with morphological and structural

properties similar to those obtained via ab-initio MD. To this aim we performed a systematic

comparison of the structural properties of samples generated with the two methods. In order
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to perform a consistent comparison, we built systems with 200 atoms and a C-content of 5%.

The samples are analyzed at two different temperatures, 300K (in the solid phase) and 5000K

(in the liquid phase) and several densities. A standard quench-from-melt protocol has been

employed to generate the samples, as described below: the systems were first equilibrated in

the liquid phase at 5000K for then cooled at 300K with a cooling rate of 100K/ps.

Extremely good agreement between the DFT and GAP curves with respect both to

the position of the peaks and their relative amplitude, for the considered temperatures and

densities. In particular, all the samples show a complete lack of structural order for distances

larger than 4 Å. This confirms that our GAP potential is suitable and accurate to perform

a systematic analysis of BN in amorphous form upon Carbon doping.

Sample generation

The procedure we followed to generate the samples of amorphous boron nitride with varying

carbon content consists of a sequence of different computational steps.18 First, we started

from an atomic configuration of Boron, Nitrogen and Carbon atoms randomly located in

the cell volume; then, we equilibrated the system at high temperature (5000K) for 10 ps

(timestep 0.25 fs) using a Nosé-Hover thermostat in order for the system to be found in a

liquid melt state.In all the samples considered in this work, the mass density is chosen to

be close to the experimentally observed value,19 ∼ 2.1 g/cm3. We subsequently reduced the

temperature to 300K in the constant-volume, constant-temperature (NVT) ensemble with a

cooling rate of 100K/ps. The latter parameter has been chosen in order to obtain realistic

amorphous samples yet maintaining the computational cost at a reasonable level. The main

structural features and results of this work have proved not to be affected by the accessible

range of cooling rate.

Finally, the structures thus obtained are then relaxed at 300K for 3 ps and eventually

equilibrated for 3 ps at the same temperature in the NPT ensemble to let the system relax

the size of the cell. Periodic boundary conditions have been applied to the cell and the
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Figure 1: Scatter plots of the energies and forces obtained using GAP as a function of the
corresponding DFT values. Values are computed on the training (left) and validation (right)
datasets.
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Figure 2: (top panels) Absolute values of the errors of energies and atomic forces as a function
of the corresponding DFT values for a set of 300 a-BN structures with varying C-content.
(bottom panels) Cumulative distribution functions of the absolute values of errors of energies
and forces as extracted from the same set of generated atomistic samples.
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evolution of the system is performed by ageing the atomic trajectories with the velocity-

Verlet algorithm.

Bonding Character

Figure 3: (a) RDF for specific atomic bonding; (b) average coordination number versus
carbon-content, (c) evolution of the number of chemical bonds with C concentration; (d)
evolution of the ratio number of sp2-hybridized bonds with sp3-hybridized bonds with C
concentration.
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Diffusivity

Figure 4: Diffusivity of atoms as a function of temperature for different samples of α-BN:C.
The values have been averaged over 5 samples for each given C-content. Vertical bars show
the statistical error.
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