Construction of Scalable DNA Computing Nano-system for

Large-scale and Complex Logical Operations

Chunyang Zhou,^a Yiwei Song,^a Xiuyan Jin,^a Bei Li,^{*bc} Chunying Pang^{*a}

^a Biomedical Engineering, School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130031, China. Email: 1281957328@qq.com
^b Changchun Institute of optics, precision machinery and physics, Chinese Academy of Sciences, Changchun, 130031. Email: beili@ciomp.ac.cn
^c University of Chinese Academy of Sciences, Beijing 100049.

Platform (P1-P10)	Strand name	DNA Sequence (from 5' to 3')	Modification
P-1	P ₁ -DNA	TGAAGTG TTATGAATG TT GTAATG TAATG TATGA	
	Q ₁ -DNA	ATACAA TCATA CATTA CATTAC	3'-BQH1
	F ₁ -DNA	CATTCATAACACTTCAATTACA	5'-FAM
P-2	P ₂ -DNA	AAGTGATAATGTAATGTTGTAAAGTTAAGATTGT	
	Q2-DNA	AATCAT ACAATCTTAACTTTAC	3'-BQH2
	F ₂ -DNA	CATTACATTATCACTTCAATAC	5'-HEX
P-3	P ₃ -DNA	TGTAATTGAAGTAATGTTGTAAAGTAAGATTGTA	
	Q ₃ -DNA	TAACTCTACAATCTTACTTTAC	3'-BQH1
	F ₃ -DNA	CATTACTTCAATTACAAACATC	5'-FAM
P-4	P ₄ -DNA	TGATATTGAAGTAATGTTGTAATGTATAGATATT	
	Q ₄ -DNA	ACATTCAATATCTATACATTAC	3'-BQH2
	F ₄ -DNA	CATTACTTCAATATCAACTTAA	5'-HEX
P-5	P ₅ -DNA	AGAGATTAGTTGATAGTTGTATTGATAAGTGAAT	
	Q5-DNA	TCAACAATTCACTTATCAATAC	3'-BQH1
	F ₅ -DNA	CTATCAACTAATCTCTCACTAT	5'-FAM
	P ₆ -DNA	GAGAATAGAAGTTAAGTTGATTAGTAAGTGATTA	
P-6	Q ₆ -DNA	CTTATCTAATCACTTACTAATC	3'-BQH2
	F ₆ -DNA	СТТААСТТСТАТТСТСТСТТАА	5'-HEX
P-7	P7-DNA	GTTATGATATTGTATGTTGAATGTAATGATTAAT	
	Q7-DNA	TCCATAATTAATCATTACATTC	3'-BQH1
	F7-DNA	CATACAATATCATAACATCACT	5'-FAM
P-8	P ₈ -DNA	GAGAATATGGATAATGTTGAATATGAAGTTGAAG	
	Q ₈ -DNA	CATATTCTTCAACTTCATATTC	3'-BQH2
	F ₈ -DNA	CATTATCCATATTCTCACCTTA	5'-HEX
P-9 P-10	P ₉ -DNA	TTAAGGTTGAATGTTGTTGTTAGTAATAAGATGT	
	Q ₉ -DNA	TATCTAACATCTTATTACTAAC	3'-BQH1
	F ₉ -DNA	CAACATTCAACCTTAATACACT	5'-FAM
	P ₁₀ -DNA	TGATGTATATGTATAGTTGTTAGATGTATGAAGA	
	Q ₁₀ -DNA	CTACAATCTTCATACATCTAAC	3'-BQH2
	F ₁₀ -DNA	CTATACATATACATCATTCTCA	5'-HEX

 Table S1. Single-stranded DNA used for the construction of reaction platform.

<u>Square root</u> Input Library	Subset	DNA Sequence (from 5' to 3')
A	A1	AGTTAAGATTGTATGATT
	A2	TAACTCTACAATCTTACT
	A3	AAATCCTCAACAATTCGTATTGATAAGTGAAT TGTTGA
	A4	ATTAGATAAGTAAGAG
	A5	GAAGAATATGAAGTAA
	A6	ССТАСТТАТСТААСАТGТААТААGATGTTAGATA
	A7	CTACAATCTTCATACATC
	A8	ATTCAACCTTAATACACT
	B1	AGTTAAGATTGTATGATT
	B2	TGTATAGATATTGAATGT
	B3	TAACTCTACAATCTTACT
	B4	CTCTTACTTATCTAATGATTAGTAAGTGATTAGATAAG
n	B5	GAATTGTTGAGGATTT
В	B6	GAAGAATATGAAGTAA
	B7	GTGAAATAAGGTGAGA
	B8	ATGTTAGATAAGTAGG
	B9	CTACAATCTTCATACATC
	B10	TGAGAATGATGTATATGT
	C1	TG TAATG TATGATTGTAT
	C2	ΑΑΤCΑΤ ΑCΑΑΤCΤΤΑΑCΤ
C	C3	GAATTGTTGAGGATTT
C	C4	TTACTTCATATTCTTCGAATATGAAGTTGAAG AATATG
	C5	CCTACT ΤΑΤCΤΑΑCAT
	C6	CTCTTACTTATCTAAT
	D1	TG TAATG TATGATTGTAT
	D2	AGTAAGATTGTAGAGTTA
	D3	ACATTCAATATCTATACA
D	D4	ATTAGATAAGTAAGAG
	D5	TAAGGTGAGAATATGGATAATGTCTCACCTTATTTCAC
	D6	GATGTATGAAGATTGTAG
	D 7	AGTGTATTAAGGTTGAAT
	D8	ACATATACATCATTCTCA

Table S2. Sequence of input DNA used in the operation square root logic circuit.

<u>Cube root</u> Input Library	Subset	DNA Sequence (from 5' to 3')
	A1	AGTTAAGATTGTATGATT
	A2	ТТААБТТБАТАТТБААБТАТСААСТТАААААТСС
	A3	TCAACAATTCACTTATCA
А	A4	AAGTAAATAGTGAGAG
	A5	GTGAAATTAAGAGAGA
	A6	TCCATAATTAATCATTAC
	A 7	GAGAATAGTGATGTTA
	A8	TATCTAACATCTTATTAC
	A9	ATGTTTTGAGAATGAT
	B1	AGTTAAGATTGTATGATT
	B2	GGATTTTTAAGTTGAT
	B3	ACATTCAATATCTATACA
	B4	TAAGAGGATGTTTGTA
	B5	TGATAAGTGAATTGTTGA
	B6	CTTATCTAATCACTTACT
В	B 7	CTCTCACTATTTACTT
	B8	AGTAGGTTAAGAGAGA
	B 9	ATGAAGTTGAAGAATATG
	B10	TCCATAATTAATCATTAC
	B11	GTAATAAGATGTTAGATA
	B12	CTACAATCTTCATACATC
	B13	GGATAATGAGAATGAT
	B1	AGTTAAGATTGTATGATT
	B2	TGTATAGATATTGAATGT
	B3	GATGTTTGTAATTGAAGTTACAAACATCCTCTTA
	B4	ATCAACTTAAAAAATCC
	B5	AGTAAGTGATTAGATAAG
С	B6	ATAGTGAGAGATTAGTTGCTCTCACTATTTACTT
	B 7	TCAACAATTCACTTATCA
	B8	TTAAGAGAGAATAGAAGTTCTCTCTTAATTTCAC
	B 9	GTAATGATTAATTATGGA
	B10	CATATTCTTCAACTTCAT
	B11	GATGTATGAAGATTGTAG
	B12	TGAGAATGATGTATATGTATCATTCTCAAAACAT
	D1	TGTAATGTATGATTGTAT
	D2	AATCATACAATCTTAACT
n	D3	TCAACAATTCACTTATCA
U	D4	TTAAGAGAGAATAGAAGTTCTCTCTTAACCTACT
	D5	AGTGATGTTATGATATTGTAACATCACTATTCTC
	D6	TATCTAACATCTTATTAC
	D7	TGAGAATGATGTATATGTATCATTCTCATTATCC

Table S3. Sequence of input DNA used in the operation cube root logic circuit.

Fig. S1 Diagram of the combination of monomers forming the reaction platform. Each monomer consists of three single-stranded DNAs and can form up to six encodable sites. In the case of Platform-1, the encoded sites are s1-1, s1-2, s1-3, s1-4, s1-5 and s1-6, which remain single stranded. Each coding site can be modified by fluorophore or quenching group.

Fig. S2 Optimized concentrations of three single-stranded DNAs that consist of each platform

monomer. As shown in Fig. 2c, the original concentrations of P-DNA and F-DNA are set to 100 nm and mix preferentially, followed by the addition of Q-DNA. As shown in Fig. S3, as the concentration of Q-DNA gradually increases, the fluorescence intensity gradually decreases. When it drops to a minimum the corresponding concentration is the optimal concentration of Q-DNA, which is indicated in the red box in Fig. S3.

Fig. S3 The fluorescence intensity changes before and after adding the input sequence into the five subsets. In the mixture of P1+P2, P3+P4, P5+P6, P7+P8, and P9+P10, the fluorescence intensity of each two monomers with the addition of no input DNA (0 0) is the low and ideal background signal. When the addition of the input DNA that can "turn on" any monomer (1 0/0 1) in each mixture, its fluorescence signal was significantly increased, while the fluorescence signal of the other monomer remained low. When the input sequences were added to light up both monomers in the mixture (1 1), both fluorescence signals were significantly improved.

Fig. S4 Display of the input DNA library design for the cube root logic computing.

Fig. S5 Logic circuit diagram for realizing cube root calculation.

Fig. S6 Detailed work mechanism of bl-SW in the operation of " $\sqrt[2]{7}=2.65$ " and " $\sqrt[2]{10}=3.16$ ". The "ON" or "OFF" status of the fluorescence signal was monitored by contrast before and after adding the bl-SW to the reaction platform.

Fig. S7 Histogram of normalized fluorescence output intensities of P1 to P10 within the calculation range of any integer up to " $1 \le x \le 10$ " in the cube root operation. The error bars are obtained via three independent experiments and donate standard deviation (S.D.).

Fig. S8 Display of the raw gel images corresponding to Fig. 2e.