Hardware Trojans based on Two-dimensional Memtransistor

Akshay Wali¹, Harikrishnan Ravichandran², and Saptarshi Das^{1,2,3,4,*}

¹Electrical Engineering and Computer Science, Penn State University, University Park, PA 16802, USA ²Engineering Science and Mechanics, Penn State University, University Park, PA 16802, USA ³Materials Science and Engineering, Penn State University, University Park, PA 16802, USA

Corresponding author email address: sud70@psu.edu

Supporting Figure S1: Evaluating device-to-device variation across a population of 16 MoS₂-based FETs by measuring the transfer characteristics in a) logarithmic scale and b) linear scale. The devices consistently show good I_{ON} values with I_{ON}/I_{OFF} ratios of about 10⁷. c) A histogram plot of the threshold voltage (V_{TH}) extracted from the linear scale once again prove the high quality of MOCVD grown MoS₂.

Supporting Figure S2: Band diagram profile of our 2D memtransistor architecture showing a 40 nm alumina (Al_2O_3) as the gate dielectric, a 3 nm hafnia (HfO_2) as a charge trapping layer in a floating gate (FG) configuration, and a 7 nm Al_2O_3 as the tunnelling layer under three different gate bias (V_{BG}) conditions. A large negative V_{BG} facilitates tunnelling of holes through the tunnelling layer into the FG whereas a large positive V_{BG} facilitates the tunnelling of electrons into the FG. These carriers remain trapped in the FG thereby causing a negative and a positive shift in the V_{TH} , respectively, by screening the electric field. The subsequent accumulation of these carriers is enabled by the Fowler Nordheim tunnelling

Supporting Figure S3: Inverter output characteristics for a supply voltage $V_{DD} = 5V$. The inverter shows normal characteristics at higher supply voltage in spite of the presence of a HT at lower $V_{DD} = 2V$.

Supporting Figure S4: Evolution of degradation observed in the subthreshold slope (SS) of a 2D memtransistor in a cascaded three-stage inverter (TSI) circuit module as a form of HT for three different individual MoS_2 memtransistors post application of a V_{HRT} of 15V followed by a V_{LRT} of -15V to the local gates.

Supporting Figure S5: The corresponding output inverter plots post V_{HRT} application of 15 V to one of the local gates MT^2 from stage 1. A clear shift in the switching voltage V_m is observed for all the stages.

Supporting Figure S6: Normal NOR functionality observed for a $V_{DD} = 5V$ despite the presence of HT at the rare node ($V_{DD} = 2V$).

Supporting Figure S7: Normal NAND functionality observed for a $V_{DD} = 5V$ despite the presence of HT at the rare node ($V_{DD} = 2V$).

Supporting Figure S8: a) A 2D plot for long term retention of two representative analog resistance states for an extended period of time approximately 10^4 seconds or roughly 3 hours. b) A plot of memory ratio (MR) between the two states with time. MR varied from 3×10^2 to 1×10^2 with an exponential decay time

constant $\tau_{decayof}$ 7x 10³ seconds. The fit was carried out using the following equation: where $\tau = 7 \times 10^3 s$ is the decay constant, G(t) is the MR value at $10^4 s$ and G_{Fis} the MR value at $10^0 s$. The total time extracted before the two states converge using these fitting parameters was estimated to be ~