Supplementary Information

Abnormal behavior of preferred formation of cationic vacancy from the interior in γ -GeSe monolayer with the stereo-chemical antibonding lone-pair state

Changmeng Huan^{1,2}, Yongqing Cai^{3*}, Devesh R. Kripalani⁴, Kun Zhou⁴ and Qingqing Ke^{1,2*}

¹School of Microelectronics Science and Technology, Sun Yat-sen university, Zhuhai 519082, China

²Guangdong Provincial Key Laboratory of Optoelectronic Information Processing
³Chips and Systems, Sun Yat-sen University, Zhuhai 519082, China
³Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and
Materials Engineering, University of Macau, Taipa, Macau, China
⁴School of Mechanical and Aerospace Engineering, Nanyang Technological
University, 50 Nanyang Avenue, Singapore 639798, Singapore

* Corresponding authors

E-mail: yongqingcai@um.edu.mo; keqingq@mail.sysu.edu.cn

Fig. S1 Top views of γ -GeSe monolayer with vacancies, anti-sites, and interstitials, where defect sites have been highlighted by translucent red-circles.

Fig. S2 Formation energies of α -GeSe monolayer with vacancy (a), anti-site (b), and interstitial (c) defects as functions of μ_{Ge} in the range from -5.09 eV to -4.77 eV, where γ -GeSe can remain stable with respect to the formation of bulk Ge ($\mu_{Ge} = -4.77$ eV) or Se₆ moleculer crystal ($\mu_{Ge} = -5.09$ eV).

Fig. S3 (a) The E_f of the single vacancy in a 2×2, 3×3, 4×4 supercell, and (b) the E_f of the single vacancy and double vacancies in a 3×3 supercell.

Fig. S4 The structures and interaction energies of mono-vacancies in two representative configurations. The configurations stability between two Ge-vacancies can be investigated by their interaction energies ($E_{int} = E_{2V} + E_p - 2E_{1V}$), where E_{2V} and E_{1V} mean that there are 2 mono-vacancies and 1 mono-vacancy within a 3×3 supercell, respectively.

Fig. S5 Evolution of the total energy from ab initio molecular dynamics calculations (AIMD) of γ -GeSe monolayers containing different defects at 300 K and a snapshot at 10 ps.

Fig. S6 ELF (isosurface level: 0.813) of perfect γ -GeSe (a) and γ -GeSe with V_{Ge} (b), (c) 2D ELF contour mapping of the (001) plane marked by the dashed lines in (a), and (d) unfolded band structures and local density of states of the perfect γ -GeSe monolayer supercell.