Electronic Supplementary Material (ESI) for Nanoscale Horizons. This journal is © The Royal Society of Chemistry 2023 Electronic Supplementary Material (ESI) for Nanoscale Horizons. This journal is © The Royal Society of Chemistry 2022

Supporting information for

Molecular Template Growth of Organic Heterojunction to Tailor Visual Neuroplasticity for High Performance Phototransistor with Ultra-Low Energy Consumption

Ender Ercan,* Chih-Chien Hung, Guan-Syuan Li, Yun-Fang Yang, Yan-Cheng Lin, and Wen-Chang Chen* **Table S1.** Morphological and transport properties of the biocomposite films in the GISAXS and phototransistor characterizations.

Sample	<i>d-spacing</i> (nm) ^a	crystallite size (L _c) (nm) ^b	$\mu_{FET} \times 10^{-3}$ (cm ² V ⁻¹ s ⁻¹) ^c	
DNTT/p-6p (2nm)	15.5	8.0	0.287 ± 0.0066	
DNTT/p-6p (10nm)	15.3	5.8	0.107 ± 0.0034	
DNTT/p-6p (20nm)	15.2	8.0	0.043 ± 0.0074	

^{*a*} *d*-spacing distances calculated based on the 1-D GISAXS profiles using $d = 2\pi/q^*$. ^{*b*} Crystallite sizes calculated based on the out-of-plane (100) diffraction using Scherrer equation: L_c = 0.9 × 2 π /FWHM. ^{*c*} The field-effect mobility (μ_h) is calculated at the saturation regime of transfer curve.

	μ _h (cm ² V ⁻¹ s ⁻¹)	I _{ON} /I _{OFF} ^a	<i>ΔV</i> _{TH} [V]		
Heterojunction			Program	Erase	ΔV _{TH} [V] ^b
DNTT/p-6p (2nm)	$\begin{array}{c} 0.287 \pm \\ 0.0066 \end{array}$	8.09×10 ³	2.2	-3.7	5.9
DNTT/p-6p (10nm)	$\begin{array}{c} 0.107 \pm \\ 0.0034 \end{array}$	1.97×10 ⁵	3.9	-10.6	14.5
DNTT/p-6p (20nm)	0.043 ± 0.0074	1.66×10 ⁴	3.5	-19.9	23.4

Table S2. Photonic FET device performance of the studied BCP films.

a $I_{\rm ON}$ and $I_{\rm OFF}$ currents were estimated from the transfer curves before and after light irradiation at a reading $V_{\rm GS}$ of 0 V. b Memory window ($\Delta V_{\rm TH}$) was calculated from transfer curves of the photonic memory devices.

Numbers of pulse	τ _m (s)	Light intensity (mW/cm²)	τ _m (s)	Pulse width (s)	τ _m (s)
100	10.73	21.2	7.19	10	4.24
50	10.02	14.6	6.00	5	2.69
20	2.64	11.8	3.97	1	1.49
10	1.16	8.25	3.25	500	0.99
5	0.85	5	2.90	300	0.92
1	0.04	1.4	1.98	50	0.52

Table S3. Summary of the fitted time constants from the forgetting curves with different measurement conditions of pulse numbers, light intensity and pulse width.

The respective average time constant (τ_m) can be calculated based on Eq. 1 and Eq. 2.

$I = I_0 + A_1 \exp\left(-\iota/\tau_1\right) + A_2 exp_{100}\left(-\iota/\tau_2\right)$	(Eq. 1)
τ_m (mean weight decay time) = $(A_1\tau_1 + A_2\tau_2)/(A_1 + A_2)$	(Eq. 2)

Table S4. Summary of the device parameters of the reported organic and heterojunction synaptic transistors.

Material system	Light wavelength (nm)	Channel area W(μm)×L(μm)	Operating voltage (V)	Energy consumption
PDPP4T/ Chlorophyll ^[13]	430	300 × 5	-10 ⁻⁵	0.25 fJ
P3HT-b-P2VP ^[14]	450	25 × 1500	-3×10^{-4}	0.56 fJ
Natural carotene/ PDPP4T ^[26]	405	-	-1×10^{-5}	0.0034 fJ
SWCNT/ chlorophyll-a ^[27]	665	Aspect ratio 1000	-10-4	17.5 fJ
DNTT/TPP ^[28]	450	14000 × 50	-7×10^{-5}	1.4 fJ
Pentacene/ $C_3N_4 ND^{[29]}$	365	1500 × 50	-0.3	18.06 fJ
Pentacene/PMMA /2DP ^[30]	400	1000 × 30	-0.1	0.29 pJ (290 fJ)
PTCDA/MoS ₂ ^[31]	532	2 × 5.3	0.1	10 pJ
Bilayer C8-BTBT ^[32]	365	40 × 20	-2	13.6 pJ
DNTT/ p-6P (This Work)	450	1000 × 20	-10 ⁻³	0.54 fJ

Electronic Supplementary Material (ESI) for Nanoscale Horizons. This journal is © The Royal Society of Chemistry 2022

Figure S1. (a) AFM topography of the DNTT film on the wafer without a p-6P template. 2D GIXD patterns of the p-6P films with different thickness spanning the range of (b) 2 nm (c) 10 nm, and (d) 20 nm.

Figure S2. Normalized UV-Vis absorption spectra of the DNTT-only, DNTT/p-6p (2nm), DNTT/p-6p (10nm), and DNTT/p-6p (20nm) heterojunctions.

Figure S3. Transfer characteristics and temporal I_{DS} change of the (a, b) DNTT/p-6p (2nm), (c, d) DNTT/p-6p (10nm), and (e, f) DNTT/p-6p (20nm) heterojunction phototransistors at $V_{DS} = -30$ V under blue light illumination (450 nm) with various pulse-width exhibiting memory mode.

Figure S4. EPSC variations of the photosynaptic transistors comprising the DNTTonly, DNTT/*p*-6*p* (2nm), DNTT/*p*-6*p* (10nm), and DNTT/*p*-6*p* (20nm) heterojunctions receiving 50 presynaptic light pulses (450 nm; pulse width: 50 ms) under an operating V_{DS} of -1 V.

Figure S5. The summarized statistical synaptic performance of the cells from the the studied photosynapse devices. (A_1 and A_{50}/A_1 ratio are defined as the EPSC change under a single light pulse (450 nm; width: 50 ms) and the EPSC ratio after the fiftieth pulse to the first pulse, respectively.)