Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Hydroxyl-assisted selective epoxidation of perillyl alcohol with hydrogen peroxide by vanadium-substituted phosphotungstic acid hinged on imidazolyl activated carbon

Huiting He¹, Min Zheng^{2,3}, Qiang Liu¹, Jian Liu¹, Juan Zhao¹, Yuting Zhuang¹, Xianxiang Liu¹, Qiong Xu¹, Steven R. Kirk¹ and Dulin Yin^{1*}

1. National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha, 410081 (China)

2. College of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China

3. College of Material Science & Engineering, Central South University of Forestry and Technology, Changsha 410004, China

*E-mail: dulinyin@126.com, steven.kirk@cantab.net

Fig. S2. GC-MS of trans-1,2-epoxide

Fig. S3. ¹H NMR of 1,2-epoxide diastereomeric mixture

Fig. S4. ¹³C NMR of 1,2-epoxide diastereomeric mixture

Table S1. Catalytic oxidation of methallyl alcohol by AC-COIMIH $^+$ [H₄PW₁₀V₂] $^-$

Reaction condition:1 mmol substrate, 4 mL CH₃CN, 13 wt.% of catalyst, 60 °C, 5 h.

Table S2. The oxidation reaction of limonene under different reaction conditions.

Entry	n(H ₂ O ₂) (mol)	Time(h)	Conv. (%)	Sel. (%)					
				1	2	3	4	5	?
1	1.5	5	5.7	34.5	18.0	21.9	-	15.1	10.5
2	3	12	37.8	20.4	39.4	11.9	3.9	5.2	19.2

Reaction condition:1 mmol limonene, 4 mL CH₃CN, 13 wt.% of catalyst, 60 °C.

Fig. S5. Distribution of Limonene Oxidation Products

Fig. S6. FT-IR of (a) $H_3PW_{12}O_{40}$, (b) $H_4PW_{11}VO_{40}$, (c) $H_5PW_{10}V_2O_{40}$ (d) $H_6PW_9V_3O_{40}$

Vibration mathed	Wavenumber (cm ⁻¹)					
vibration method	$H_3PW_{12}O_{40}$	$H_4PW_{11}VO_{40} \\$	$H_5PW_{10}V_2O_{40}$	$H_6PW_9V_3O_{40}$		
δ(H-OH)	3409	3440	3438	3448		
ν(O-H)	1626	1626	1624	1623		
v(P-Oa)	1081	1081	1080	1079		
v(M=Od)	984	983	983	982		
v(M-Ob-M)	892	887	885	885		
v(M-Oc-M)	806	804	797	794		

Table S3. Infrared data of vanadium substituted Keggin POMs

Fig. S7. TG of (a) $H_4PW_{11}VO_{40}$, (b) $H_5PW_{10}V_2O_{40}$, (c) $H_6PW_9V_3O_{40}$

	W (<i>wt.</i> %	b)	V (<i>wt.</i> %)		
Heteropolyacids	Theoretical value	Test value	Theoretical value	Test value	
$H_4PW_{11}VO_{40}{\cdot}4H_2O$	71.70	71.35	1.81	1.75	
$H_5 PW_{10}V_2O_{40} \cdot 5H_2O$	67.93	67.33	3.76	3.47	
$H_6PW_9V_3O_{40}{\cdot}5H_2O$	64.27	64.16	5.94	5.62	