Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

New Journal of Chemistry

p-Toluenesulfonic acid-catalyzed regioselective C4-H iodination of

isoquinolin-1(2H)-ones with N-iodosuccinimide

Cai-Yun Yang^a, Lin-Ping Hu^a, De-Run Zhang^a, Xia Li^b, Ming-Yu Teng^a, Bo Liu^a and

Guo-Li Huang*a

^a School of Chemistry and Chemical Engineering, ^b Department of Library, Yunnan

Normal University, Kunming, P. R. China

Tel & Fax: +86-871-65941087; E-mail: hgli2005@126.com

Table of Contents

1.	Experimental section	S2
2.	Experimental procedures	S3-S4
3.	¹ H and ¹³ C NMR data of 4-iodoisoquinolin-1(2 <i>H</i>)-ones (3a-3u)	S5-S11
4.	¹ H and ¹³ C NMR data of iodinated products (4a-4e)	S12-S13
5.	¹ H and ¹³ C NMR data of coupling products (5a-5c)	S13-S14
6.	Mechanistic studies	S15
7.	¹ H and ¹³ C NMR spectra of 4-iodoisoquinolin-1(2 <i>H</i>)-ones (3a-3u)	S16-S39
8.	¹ H and ¹³ C NMR spectra of iodinated products (4a-4e)	S40-S44
9.	¹ H and ¹³ C NMR spectra of coupling products (5a-5c)	S45-S47

1. Experimental section

All chemicals were purchased from the Wencai New Material Technology and Merck in high purityand were used directly without any purification.Solvents were freshly distilled prior to use. All reactions were carried out under air atmosphere unless noted. ¹H NMR and ¹³C NMR spectra were recorded with a Bruker Avance III 500 MHz spectrometer in CDCl₃ or DMSO-*d6* solution. Highresolution mass (HRMS) spectra were measured with a VG Auto Spec-3000 spectrometer. Melting points (mp) were determined with a digital electrothermal apparatus without further correction. TLC analyses were performed on commercial glass plates bearing a 0.25mm layer of Merck silica gel 60 F254. Silica gel (200-300 mesh) was used for column chromatography.

2. Experimental procedures

A. General procedure for preparation of N^2 -alkylated isoquinolin-1(2H)-ones^[1]

Isoquinolin-1(2*H*)-ones (1.0 mmol, 1.0 equiv.), halides (1.5 mmol, 1.5 equiv.), cesium carbonate (1.5 mmol, 1.5 equiv.) and DMF (5.0 mL) were added to a 25 mL round bottom flask, and reacted at 50 °C for 3 hours. After the reaction was completed, water was added and extracted by ethyl acetate (3×10 mL), then the organic phases were combined which was washed by 10 mL saturated brine and dried over anhydrous magnesium sulfate. The solvent was removed under reduced pressure and purified by silica gel column chromatography.

Isoquinolin-1(2*H*)-ones (1a, 1c-1h, 1j, 1p-1u) were synthesized using the above method:

B. Preparation of 2-(p-tolyl)isoquinolin-1(2H)-one (1i)^[2]

Isoquinolin-1(2*H*)-one (0.4 mmol, 1.0 equiv.), p-iodotoluene (0.8 mmol, 2.0 equiv.), potassium carbonate (0.4 mmol, 1.0 equiv.), CuI (0.04 mmol, 0.1 equiv.), DMF (1 mL) was added to a 10 mL round-bottom flask, and reacted at 150 °C for 6

hours under N_2 protection. After the reaction was completed, 10 mL ethyl acetate was diluted and ammonia water was added. The aqueous layer was continuously extracted with ethyl acetate (10 mL). The organic phases were combined and saturated salt. It

was washed with water, dried with anhydrous magnesium sulfate, and purified by silica gel column chromatography

C. General experimental procedure for iodination of isoquinolin-1(2*H*)-ones with *N*-iodosuccinimide

A 10 mL round-bottom flask equipped with a magnetic stir bar was charged with a mixture of isoquinolin-1(2*H*)-one (0.2 mmol, 1.0 equiv.), *N*-iodosuccinimide (0.24 mmol, 1.2 equiv.), *p*-toluenesulfonic acid monohydrate (0.02 mmol, 0.1 equiv), and DCE (1mL). The vial was capped, and the reaction mixture was stirred at room temperature for 18 h under Ar atmosphere. Upon completion, saturated NaHSO₃ (5 mL) and distilled deionized H₂O (10 mL) was added, and the mixture was extracted with ethyl acetate (3×10 mL). The combined organic layer was washed with saturated NaCl, dried over anhydrous MgSO₄, and concentrated in vacuo. The crude product was purified by SiO₂ column chromatography to afford the desired products.

Reference:

- [1] A. C. Shaikh, D. R. Shinde, N. T. Patil, Org. Lett. 2016, 18, 1056-1059.
- [2] J. Li, Y. Yang, Z. Wang, B. Feng, J. You, Org. lett. 2017, 19, 3083-3086.

3. ¹H and ¹³C NMR data of 4-iodoisoquinolin-1(2*H*)-ones (3a-3u)

2-Benzyl-4-iodoisoquinolin-1(2*H***)-one (3a)**^[1]: White solid, yield: 90% (65.0 mg), Mp: 103-105 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.44 (d, *J* = 8.0 Hz, 1H), 7.76-7.70 (m, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.58-7.52 (m, 2H), 7.40-7.28 (m, 5H), 5.20 (s, 2H). ¹³C NMR (126

MHz, CDCl₃) δ 161.8 (*C*=O), 137.6 (Ar-C), 137.2 (Ar-C), 136.5 (Ar-C), 133.5 (Ar-C), 130.6 (Ar-C), 129.1 (Ar-C), 128.6 (Ar-C), 128.3 (Ar-C), 128.2 (Ar-C), 128.1 (Ar-C), 126.8 (Ar-C), 72.4 (*C*-I), 51.8 (-*C*H₂).

2-Benzyl-4-bromoisoquinolin-1(2*H***)-one (3a')**^[2]: Yellow solid, yield: 56% (35.2 mg), Mp: 68-70 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.53-8.44 (m, 1H), 7.81 (d, *J* = 7.9 Hz, 1H), 7.78-7.72 (m, 1H), 7.60-7.54 (m, 1H), 7.40-7.29 (m, 6H), 5.21 (s, 2H). ¹³C NMR (126 MHz,

CDCl₃) δ 161.5 (*C*=O), 136.4 (Ar-C), 135.6 (Ar-C), 133.2 (Ar-C), 131.9 (Ar-C), 129.1 (Ar-C), 128.6 (Ar-C), 128.3 (Ar-C), 128.2 (Ar-C), 128.1 (Ar-C), 126.7(Ar-C), 126.0 (Ar-C), 100.4 (*C*-Br), 51.9 (-*C*H₂).

2-Benzyl-4-chloroisoquinolin-1(2*H***)-one (3a'')**^[3]: Yellow liquid, yield: 77% (41.5 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.50 (d, *J* = 8.0 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 1H), 7.77 (t, *J* = 7.6 Hz, 1H), 7.59 (t, *J* = 7.3 Hz, 1H), 7.34 (q, *J* = 8.9, 7.8 Hz, 5H), 7.24 (s, 1H), 5.21 (s,

2H). ¹³C NMR (126 MHz, CDCl₃) δ 161.4 (*C*=O), 136.4 (Ar-C), 134.8 (Ar-C), 133.1 (Ar-C), 129.3 (Ar-C), 129.1 (Ar-C), 128.7 (Ar-C), 128.3 (Ar-C), 128.2 (Ar-C), 128.1 (Ar-C), 126.4 (Ar-C), 123.6 (Ar-C), 111.8 (*C*-Cl), 51.9 (-*C*H₂).

4-Iodoisoquinolin-1(2*H***)-one (3b)**: White solid, yield: 97% (52.6 mg), Mp: 246-248 °C. ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.50 (s, 1H), 8.18 (d, *J* = 7.9 Hz, 1H), 7.82 (t, *J* = 7.6 Hz, 1H), 7.68-7.54 (m, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.6 (*C*=O), 138.0 (Ar-C), 136.0 (ArC), 134.1 (Ar-C), 130.4 (Ar-C), 128.0 (Ar-C), 127.8 (Ar-C), 127.1 (Ar-C), 70.9 (C-I). HRMS (ESI) [M+H⁺] Calcd For C₉H₇INO: 271.9567, Found: 271.9570.

4-Iodo-2-methylisoquinolin-1(2*H***)-one (3c)**^[1]: Yellow solid, yield: 94% (53.6 mg), Mp: 120-122 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.41 (d, *J* = 9.0 Hz, 1H), 7.72 (td, *J* = 7.6, 7.1, 1.2 Hz, 1H), 7.67 (d, *J* = 7.3 Hz, 1H), 7.57-7.50 (m, 2H), 3.60 (s, 3H). ¹³C NMR (126 MHz,

CDCl₃) δ 162.4 (*C*=O), 139.0 (Ar-C), 137.6 (Ar-C), 133.5 (Ar-C), 130.8 (Ar-C), 128.5 (Ar-C), 128.2 (Ar-C), 126.9 (Ar-C), 71.8 (*C*-I), 37.2 (-*C*H₃).

2-Ethyl-4-iodoisoquinolin-1(2*H***)-one (3d)**^[1]: Yellow solid, yield: 88% (52.6 mg). Mp: 77-79 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.45-8.37 (m, 1H), 7.71 (td, *J* = 7.6, 7.0, 1.3 Hz, 1H), 7.66 (d, *J* = 8.1 Hz, 1H), 7.55-7.49 (m, 2H), 4.04 (q, *J* = 7.2 Hz, 2H), 1.39 (t, *J* = 7.2 Hz,

3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.4 (*C*=O), 137.7 (Ar-C), 137.3 (Ar-C), 133.2 (Ar-C), 130.5 (Ar-C), 128.3 (Ar-C), 127.9 (Ar-C), 126.9 (Ar-C), 71.8 (*C*-I), 44.5 (-*C*H₂), 14.8 (-*C*H₃).

4-iodo-2-propylisoquinolin-1(2*H***)-one** (**3e**)^[1]: Yellow liquid, yield: 80% (50.1 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.40 (dd, J = 8.0, 0.8 Hz, 1H), 7.73-7.69 (m, 1H), 7.66 (d, J = 7.4 Hz, 1H), 7.55-7.49 (m, 2H), 3.95 (t, J = 7.4 Hz, 2H), 1.86-1.77 (m, 2H), 0.99 (t, J

= 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.5 (*C*=O), 138.0 (Ar-C), 137.1 (Ar-C), 133.1 (Ar-C), 130.3 (Ar-C), 128.2 (Ar-C), 127.7 (Ar-C), 126.7 (Ar-C), 71.4 (*C*-I), 50.9 (-N*C*H₂), 22.6 (-*C*H₂CH₃), 11.1 (-*C*H₃).

2-Butyl-4-iodoisoquinolin-1(2*H***)-one (3f)**^[1]: Yellow liquid, yield: 76% (49.7 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.40 (d, *J* = 7.8 Hz, 1H), 7.70 (td, *J* = 7.6, 7.1, 1.3 Hz, 1H), 7.65 (d, *J* = 7.4 Hz, 1H), 7.55-7.49 (m, 2H), 4.01-3.95 (m, 2H), 1.79-1.73 (m, 2H), 1.40 (m, J = 7.4 Hz, 2H), 0.96 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.6 (*C*=O), 138.1 (Ar-C), 137.2 (Ar-C), 133.2 (Ar-C), 130.4 (Ar-C), 128.3 (Ar-C), 127.9 (Ar-C), 126.8 (Ar-C), 71.6 (*C*-I), 49.3 (-NCH₂), 31.6 (-NCH₂CH₂), 20.1 (-CH₂CH₃), 13.9 (-CH₂CH₃).

2-(sec-Butyl)-4-iodoisoquinolin-1(2*H***)-one (3g)**: Yellow liquid, yield: 92% (60.2 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.41 (d, *J* = 7.8 Hz, 1H), 7.74-7.68 (m, 1H), 7.65 (d, *J* = 7.8 Hz, 1H), 7.56-7.50 (m, 1H), 7.46 (s, 1H), 5.13 (h, *J* = 6.9 Hz, 1H), 1.76-1.72 (m, 2H), 1.37 (d, *J* = 6.9 Hz, 3H), 0.89 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126

MHz, CDCl₃) δ 161.7 (*C*=O), 136.7 (Ar-C), 133.9 (Ar-C), 133.2 (Ar-C), 130.4 (Ar-C), 128.7 (Ar-C), 127.8 (Ar-C), 126.8 (Ar-C), 72.2 (*C*-I), 52.1 (-NCH), 29.2 (-*C*H₂CH₃), 20.3 (-NCH*C*H₃), 10.9 (-CH₂CH₃). HRMS (ESI) [M+H⁺] Calcd For C₁₃H₁₅INO: 328.0193, Found: 328.0197.

Ethyl 2-(4-iodo-1-oxoisoquinolin-2(1*H*)-yl)acetate (3h): White solid, yield: 80% (57.1 mg), Mp: 161-163 °C. ¹H NMR (500 MHz, CDC1₃) δ 8.38 (d, *J* = 8.0 Hz, 1H), 7.74 (td, *J* = 7.6, 7.1, 1.3 Hz, 1H), 7.69 (d, *J* = 8.1 Hz, 1H), 7.57-7.51 (m, 1H), 7.47 (s, 1H), 4.68 (s, 2H), 4.26 (q, *J* = 7.1 Hz, 2H), 1.30

(t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.9 (OC=O), 161.8 (-NC=O), 137.9 (Ar-C), 137.5 (Ar-C), 133.7 (Ar-C), 130.7 (Ar-C), 128.5 (Ar-C), 128.2 (Ar-C), 126.3 (Ar-C), 72.3 (C-I), 62.1 (-NCH₂), 50.1 (-CH₂CH₃), 14.3 (-CH₂CH₃). HRMS (ESI) [M+H⁺] Calcd For C₁₃H₁₃INO₃: 357.9935, Found: 357.9938.

4-Iodo-2-(p-tolyl)isoquinolin-1(2*H***)-one** (**3i**): White solid, yield: 88% (63.5 mg), Mp: 102-104 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.47-8.43 (m, 1H), 7.76 (td, *J* = 7.6, 7.0, 1.3 Hz, 1H), 7.74-7.71 (m, 1H), 7.64 (s, 1H), 7.59-7.54 (m, 1H), 7.30 (s, 4H), 2.42 (s, 3H). ¹³C NMR (126

MHz, CDCl₃) δ 161.7 (*C*=O), 138.7 (Ar-C), 138.5 (Ar-C), 138.1 (Ar-C), 137.3 (Ar-C), 133.7 (Ar-C), 130.6 (Ar-C), 130.2 (Ar-C), 128.8 (Ar-C), 128.2 (Ar-C), 127.0 (Ar-C), 126.6 (Ar-C), 72.1 (*C*-I), 21.3 (-*C*H₃). HRMS (ESI) [M+H⁺] Calcd For C₁₆H₁₃INO: 362.0036, Found: 362.0043.

4-Iodo-2-(2-oxo-2-phenylethyl)isoquinolin-1(2*H***)-one (3**j): White solid, yield: 70% (54.5 mg), Mp: 163-165 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.43-8.36 (m, 1H), 8.08-8.00 (m, 2H), 7.73 (ddd, *J* = 14.0, 8.1, 7.0 Hz, 2H), 7.68-7.62 (m, 1H), 7.57-7.50 (m, 3H), 7.47 (s, 1H), 5.42 (s, 2H). ¹³C NMR (126 MHz,

CDCl₃) δ 192.4 (*C*=O), 161.8 (-N*C*=O), 138.3 (Ar-C), 137.6(Ar-C), 134.8 (Ar-C), 134.3 (Ar-C), 133.6 (Ar-C), 130.7 (Ar-C), 129.1 (Ar-C), 128.5 (Ar-C), 128.3 (Ar-C), 128.1 (Ar-C), 126.4 (Ar-C), 72.2 (*C*-I), 54.1 (-*C*H₂). HRMS (ESI) [M+H⁺] Calcd For C₁₇H₁₃INO₂: 389.9985, Found: 389.9989.

4-Iodo-6-methylisoquinolin-1(2*H***)-one (3k)**: Yellow solid, yield: 80% (45.6 mg), Mp: 288-290 °C. ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.42 (s, 1H), 8.10-8.06 (m, 1H), 7.58 (d, *J* = 5.0 Hz, 1H), 7.42 (s, 1H), 7.39 (d, *J* = 8.1 Hz, 1H). ¹³C NMR (126 MHz,

DMSO-*d*₆) δ 161.1 (*C*=O), 143.9 (Ar-C), 137.6 (Ar-C), 135.6 (Ar-C), 129.6 (Ar-C), 128.9 (Ar-C), 127.4 (Ar-C), 124.5 (Ar-C), 70.3 (*C*-I), 21.5 (-*C*H₃). HRMS (ESI) [M+H⁺] Calcd For C₁₀H₉INO: 285.9723, Found: 285.9728.

4-Iodo-6-methoxyisoquinolin-1(*2H*)-one (3I): Yellow solid, yield: 97% (58.4 mg), Mp: 263-265 °C. ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.35 (s, 1H), 8.11 (d, *J* = 8.8 Hz, 1H), 7.59 (s, 1H), 7.14 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.01 (d, *J* = 2.3 Hz, 1H), 3.92 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 163.3 (Ar-C),

161.0 (C=O), 139.9 (Ar-C), 136.5 (Ar-C), 129.9 (Ar-C), 120.4 (Ar-C), 116.1 (Ar-C),

112.1 (Ar-C), 70.2 (*C*-I), 55.7 (-O*C*H₃). HRMS (ESI) [M+H⁺] Calcd For C₁₀H₉INO₂: 301.9672, Found: 301.9677.

6-Fluoro-4-iodoisoquinolin-1(2*H***)-one (3m)**: Yellow solid, yield: 82% (47.4 mg), Mp: 289-291 °C. ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.60 (s, 1H), 8.26 (dd, *J* = 8.8, 6.0 Hz, 1H), 7.67 (d, *J* = 4.5 Hz, 1H), 7.41 (td, *J* = 8.6, 2.5 Hz, 1H), 7.34 (dd, *J* = 10.4, 2.4 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 165.2 (d, *J*_{CF} =

250.7 Hz, Ar-C), 160.5 (*C*=O), 140.5 (d, J_{CF} = 11.3 Hz, Ar-C), 137.2 (Ar-C), 131.2 (d, J_{CF} = 10.0 Hz, Ar-C), 123.4 (d, J_{CF} = 1.3 Hz, Ar-C), 115.7 (d, J_{CF} = 26.5 Hz, Ar-C), 115.1 (d, J_{CF} = 23.9 Hz, Ar-C), 68.9 (d, J_{CF} = 2.5 Hz, C-I). ¹⁹F NMR (471 MHz, CDCl₃) δ 105.2. HRMS (ESI) [M+H⁺] Calcd For C₉H₆FINO₂: 289.9473, Found: 289.9479.

6-Chloro-4-iodoisoquinolin-1(2*H***)-one (3n)**: White solid, yield: 67% (40.9 mg), Mp: >300 °C. ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.66 (s, 1H), 8.18 (d, *J* = 8.4 Hz, 1H), 7.73-7.54 (m, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 160.6 (*C*=O), 139.3 (Ar-C), 138.7

(Ar-C), 137.3 (Ar-C), 129.9 (Ar-C), 129.0 (Ar-C), 127.7 (Ar-C), 125.3 (Ar-C), 68.6 (*C*-I). HRMS (ESI) [M+H⁺] Calcd For C₉H₆ClINO₂: 305.9177, Found: 305.9182.

6-Bromo-4-iodoisoquinolin-1(2*H***)-one (30)**: White solid, yield: 82% (57.4 mg), Mp: >300 °C. ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.65 (s, 1H), 8.09 (d, *J* = 8.5 Hz, 1H), 7.83-7.64 (m, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 160.7 (*C*=O), 139.4 (Ar-C), 137.2 (Ar-C), 132.1 (Ar-C), 130.5 (Ar-C), 129.8 (Ar-C), 127.8 (Ar-C),

125.6 (Ar-C), 68.5 (C-I). HRMS (ESI) [M+H⁺] Calcd For C₉H₆BrINO₂: 349.8672, Found: 349.8675.

4-Iodo-2,6-dimethylisoquinolin-1(2*H***)-one (3p)**^[1]: Yellow liquid, yield: 85% (50.8 mg). ¹H NMR (500 MHz, CDCl₃) δ S9

8.25 (d, *J* = 8.1 Hz, 1H), 7.48 (s, 1H), 7.39 (s, 1H), 7.31 (d, *J* = 8.2 Hz, 1H), 3.56 (s, 3H), 2.51 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.0 (*C*=O), 144.0 (Ar-C), 138.8 (Ar-C), 137.3 (Ar-C), 130.2 (Ar-C), 129.4 (Ar-C), 128.2 (Ar-C), 124.3 (Ar-C), 71.4 (*C*-I), 36.8 (-NCH₃), 22.0 (-CH₃).

4-Iodo-6-methoxy-2-methylisoquinolin-1(*2H*)-one (**3q**)^[1]: Yellow liquid, yield: 87% (54.8 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.32 (d, *J* = 8.8 Hz, 1H), 7.51 (s, 1H), 7.09-7.00 (m, 2H), 3.95 (s, 3H), 3.57 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ

163.7 (Ar-C), 161.8 (C=O), 139.6 (Ar-C), 139.5 (Ar-C), 130.5 (Ar-C), 120.3 (Ar-C), 116.9 (Ar-C), 112.2 (Ar-C), 71.2 (C-I), 55.7(-OCH₃), 36.8 (-NCH₃).

4-Iodo-2-methyl-6-phenylisoquinolin-1(*2H*)-one (3r)^[1]: Yellow solid, yield: 89% (64.3 mg), Mp: 176-178 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.45 (d, *J* = 8.3 Hz, 1H), 7.83 (d, *J* = 2.2 Hz, 1H), 7.73 (dd, *J* = 19.0, 8.1 Hz, 3H), 7.58-7.47 (m, 3H), 7.43 (t, *J* = 7.3 Hz, 1H), 3.61 (s, 3H). ¹³C NMR (126 MHz,

CDCl₃) δ 161.8 (*C*=O), 145.9(Ar-C), 139.7 (Ar-C), 139.0 (Ar-C), 137.5 (Ar-C), 129.0 (Ar-C), 128.8 (Ar-C), 128.6 (Ar-C), 128.4 (Ar-C), 127.6 (Ar-C), 126.9 (Ar-C), 125.2 (Ar-C), 71.6 (*C*-I), 36.8 (-N*C*H₃).

6-Fluoro-4-iodo-2-methylisoquinolin-1(2*H*)-one (3s)^[1]: White liquid, yield: 72% (43.6 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.43 (dd, J = 8.6, 5.9 Hz, 1H), 7.55 (s, 1H), 7.39-7.32 (m, 1H), 7.22-7.15 (m, 1H), 3.59 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.0 (d, J_{CF} = 253.3 Hz, Ar-C), 161.4 (*C*=O), 140.2

(d, J_{CF} = 11.3 Hz, Ar-C), 140.1, 131.7 (d, J_{CF} = 10.1 Hz, Ar-C), 123.1 (d, J_{CF} = 1.3 Hz, Ar-C), 116.4 (d, J_{CF} = 22.7 Hz, Ar-C), 116.1 (d, J_{CF} = 25.2 Hz, Ar-C), 69.8 (d, J_{CF} = 2.5 Hz, C-I), 37.0 (-NCH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ 104.8.

6-Chloro-4-iodo-2-methylisoquinolin-1(2*H*)-one (3t)^[1]: Yellow liquid, yield: 89% (56.9 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.33 (d, J = 8.6 Hz, 1H), 7.66 (d, J = 1.9 Hz, 1H), 7.55 (s, 1H), 7.45 (dd, J = 8.6, 2.0 Hz, 1H), 3.59 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.5 (*C*=O), 140.1 (Ar-C), 138.9

(Ar-C), 130.2 (Ar-C), 130.0 (Ar-C), 128.5 (Ar-C), 124.9 (Ar-C), 69.5 (C-I), 37.0 (-NCH₃).

6-Bromo-4-iodo-2-methylisoquinolin-1(2*H*)-one (3u)^[1]: Yellow liquid, yield: 91% (66.2 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.24 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 1.7 Hz, 1H), 7.60 (dd, J = 8.5, 1.7 Hz, 1H), 7.54 (s, 1H), 3.58 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.6 (*C*=O), 140.1 (Ar-C), 138.9

(Ar-C), 133.1 (Ar-C), 131.3 (Ar-C), 130.1 (Ar-C), 128.8 (Ar-C), 125.3 (Ar-C), 69.3 (C-I), 37.0 (-NCH₃).

4. ¹H and ¹³C NMR data of iodinated products (4a-4e)

1-Ethyl-4-iodo-5-methyl-2-phenyl-1,2-dihydro-3*H***-pyrazol-3-one** (**4a**): Yellow liquid, yield: 92% (60.4 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.69-7.60 (m, 2H), 7.48-7.38 (m, 2H), 7.33-7.27 (m, 1H), 4.15 (q, *J* = 7.1 Hz, 2H), 2.27 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C

NMR (126 MHz, CDCl₃) δ 153.6 (*C*=O), 150.5 (Ar-C), 138.7 (Ar-C), 129.1 (Ar-C), 127.0 (Ar-C), 122.4 (Ar-C), 71.1 (*C*-I), 49.6 (-N*C*H₂), 15.5 (-*C*H₃), 15.0 (-CH₂*C*H₃). HRMS (ESI) [M+H⁺] Calcd For C₁₂H₁₄IN₂O: 329.0145, Found: 329.0148.

5-Iodo-3-methyl-6-phenylimidazo[2,1-*b***]thiazole (4b)**^[4]: White solid, yield: 64% (43.5 mg), Mp: 205-207 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, *J* = 7.6 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.3 Hz, 1H), 6.42 (s, 1H), 2.75 (s, 3H). ¹³C NMR (126 MHz, S11

CDCl₃) & 153.3 (Ar-C), 150.8 (Ar-C), 134.0 (Ar-C), 130.7 (Ar-C), 128.6 (Ar-C), 128.3 (Ar-C), 128.1 (Ar-C), 108.5 (Ar-C), 52.7 (C-I), 16.8 (-CH₃).

3-Iodo-2-phenylimidazo[1,2-a]pyridine (4c)^[4]: White solid, yield: 94% (60.2 mg), Mp: 162-164 °C. ¹H NMR (500 MHz, $CDCl_3$) δ 8.24 (d, J = 6.9 Hz, 1H), 8.07 (d, J = 7.3 Hz, 2H), 7.63 (d, J = 9.0 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.40 (t, J = 7.4 Hz,

1H), 7.30-7.26 (m, 1H), 6.94 (t, J = 7.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 148.3 (Ar-C), 133.7 (Ar-C), 128.7 (Ar-C), 128.5 (Ar-C), 126.7 (Ar-C), 125.7 (Ar-C), 117.8 (Ar-C), 113.3 (Ar-C), 59.6 (C-I).

Ethyl 3-iodo-1*H*-indole-2-carboxylate (4d)^[5]: White solid, yield: 73% (46.0 mg), Mp: 139-141 °C. ¹H NMR (500 MHz, $CDCl_3$) δ 9.29 (bs, 1H), 7.57 (d, J = 8.1 Hz, 1H), 7.45-7.34 (m, 2H), 7.25-7.20 (m, 1H), 4.47 (qd, J = 7.1, 2.6 Hz, 2H), 1.47 (t,

J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.0 (C=O), 136.3 (Ar-C), 131.7 (Ar-C), 127.4 (Ar-C), 126.8 (Ar-C), 123.7 (Ar-C), 121.8 (Ar-C), 112.1 (Ar-C), 66.2 (C-I), 61.7 (-*C*H₂), 14.5 (-*C*H₃).

3-Iodo-1,3,5-trimethoxybenzene (4e)^[5]: White solid, yield: 70% (41.2 mg), Mp: 114-116 °C. ¹H NMR (500 MHz, CDCl₃) δ 6.14 (s, 2H), 3.86 (s, 6H), 3.82 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.3 (Ar-C), 160.0 (Ar-C), 91.4 (Ar-C), 66.9 (C-I), 56.6 (-

OCH₃), 55.7 (-OCH₃).

5. ¹H and ¹³C NMR data of coupling products (5a-5c)

2-Benzyl-4-(phenylethynyl)isoquinolin-1(2H)-one (5a): Yellow solid, yield: 99% (66.4 mg), Mp: 49-51 °C. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 8.49 \text{ (d}, J = 8.0 \text{ Hz}, 1\text{H}), 8.03 \text{ (d}, J = 8.0 \text{ Hz})$ Hz, 1H), 7.76 (t, J = 7.9 Hz, 1H), 7.59-7.54 (m, 3H), 7.50 (s, 1H), 7.39-7.35 (m, 7H), 7.33-7.29 (m, 1H), 5.25 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 161.5 (*C*=O), 136.4 (Ar-C), 136.0 (Ar-C), 135.5 (Ar-C), 132.8 (Ar-C), 131.4 (Ar-C), 129.0 (Ar-C), 128.5 (Ar-C), 128.4 (Ar-C), 128.2 (Ar-C), 128.1 (Ar-C), 127.6 (Ar-C), 125.6 (Ar-C), 125.1 (Ar-C), 123.0 (Ar-C), 101.7 (Ar-C), 93.1 (Ph-*C*=), 83.5 (Ph-C=*C*), 52.0 (-*C*H₂). HRMS (ESI) [M+H⁺] Calcd For C₂₄H₁₈NO: 336.1383, Found: 336.1388.

2-Benzyl-4-phenylisoquinolin-1(2*H***)-one (5b)**: Brawn solid, yield: 84% (52.3 mg), Mp: 144-146 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.57 (d, *J* = 7.4 Hz, 1H), 7.62 (td, *J* = 7.6, 7.0, 1.3 Hz, 1H), 7.58-7.52 (m, 2H), 7.48-7.43 (m, 2H), 7.43-7.40 (m, 1H), 7.39 (d, *J* = 1.5 Hz, 1H),

7.38-7.37 (m, 1H), 7.36 (d, J = 6.0 Hz, 2H), 7.35-7.31 (m, 2H), 7.29 (dd, J = 6.1, 3.6 Hz, 1H), 7.08 (s, 1H), 5.28 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 161.9 (*C*=O), 136.8 (Ar-C), 136.3 (Ar-C), 136.2 (Ar-C), 132.3 (Ar-C), 130.4 (Ar-C), 130.0 (Ar-C), 128.9 (Ar-C), 128.7 (Ar-C), 128.5 (Ar-C), 128.1 (Ar-C), 127.9 (Ar-C), 127.8 (Ar-C), 127.1 (Ar-C), 126.0 (Ar-C), 124.8 (Ar-C), 120.0 (Ar-C), 51.9 (-*C*H₂). HRMS (ESI) [M+H⁺] Calcd For C₂₂H₁₈NO: 312.1383, Found: 312.1390.

Methyl (E)-3-(2-benzyl-1-oxo-1,2-dihydroisoquinolin-4yl)acrylate (5c): White solid, yield: 96% (61.3 mg), Mp: 150-152 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.52 (d, J = 8.1 Hz, 1H), 7.97 (d, J = 15.8 Hz, 1H), 7.84 (d, J = 8.1 Hz, 1H), 7.74 (t, J = 7.6 Hz, 1H), 7.58 (d, J = 7.4 Hz, 1H), 7.45 (s, 1H), 7.33 (q, J = 8.4, 7.1 Hz, 5H), 6.24 (d, J = 15.8 Hz, 1H), 5.26 (s, 2H), 3.81 (s, 3H). ¹³C

NMR (126 MHz, CDCl₃) δ 167.3 (OC=O), 162.1 (-NC=O), 139.1 (Ar-C), 136.4 (Ar-C), 135.0 (Ar-C), 133.0 (Ar-C), 131.6 (Ar-C), 129.2 (Ar-C), 129.0 (Ar-C), 128.4 (Ar-C), 128.3 (Ar-C), 128.2 (Ar-C), 127.7 (Ar-C), 125.9 (Ar-C), 122.8 (Ar-C), 118.0 (Ar-C), 113.0 (Ar-C), 52.2 (-CH₃), 51.9 (-CH₂). HRMS (ESI) [M+H⁺] Calcd For C₂₀H₁₈NO₃: 320.1281, Found: 320.1285.

Reference:

- [1] Z. Fang, Y. Wang, Y. Wang, Org. Lett. 2019, 21, 434-438.
- [2] (a) K. A. B. Austin, E. Herdtweck, T. Bach, Angew. Chem. Int. Ed. 2011, 50, 8416-8419; (b) K.-H. Rimböck, A. Pöthig, T. Bach, Synthesis 2015, 47, 2869-2884; (c) A. Ansari, S. Satalkar, V. Patil, A. S. Shete, S. Kaur, A. Gupta, S. Singh, M. Raja, D. L. Severance, S. Bernales, S. Chakravarty, D. T. Hung, S. M. Pham, F. J. Herrera, R. Rai, Bioorg. Med. Chem. Lett. 2017, 27, 217-222.
- P. V. Fish, C. G. Barber, D. G. Brown, R. Butt, M. G. Collis, R. P. Dickinson, B.
 T. Henry, V. A. Horne, J. P. Huggins, E. King, M. O'Gara, D. McCleverty, F.
 McIntosh, C. Phillips, R. Webster, *J. Med. Chem.* 2007, *50*, 2341-2351.
- [4] J. S. S. Neto, R. A. Balaguez, M. S. Franco, V. C. de Sá Machado, S. Saba, J. Rafique, F. Z. Galetto, A. L. Braga, *Green Chem.* 2020, 22, 3410-3415.
- [5] L. Lu, Y. Li, X. Jiang, Green Chem. 2020, 22, 5989-5994.

6. Mechanistic studies

HRMS spectrum of [PTSA•NIS]

7. ¹H and ¹³C NMR spectra of 4-iodoisoquinolin-1(2*H*)-ones (3a-3u)

¹H NMR of **3a** in CDCl₃

¹³C NMR of **3a** in CDCl₃

¹H NMR of **3a'** in CDCl₃

¹³C NMR of **3a'** in CDCl₃

¹H NMR of **3a''** in CDCl₃

¹³C NMR of **3a**" in CDCl₃

¹H NMR of **3b** in DMSO- d_6

¹³C NMR of **3b** in DMSO- d_6

¹H NMR of 3c in CDCl₃

¹³C NMR of **3c** in CDCl₃

¹H NMR of **3d** in CDCl₃

¹³C NMR of **3d** in CDCl₃

S23

¹H NMR of **3f** in CDCl₃

¹³C NMR of **3f** in CDCl₃

¹H NMR of **3g** in CDCl₃

¹³C NMR of **3g** in CDCl₃

¹H NMR of **3h** in CDCl₃

¹³C NMR of **3h** in CDCl₃

¹H NMR of **3i** in CDCl₃

¹³C NMR of **3i** in CDCl₃

¹H NMR of 3j in CDCl₃

¹³C NMR of **3j** in CDCl₃

¹H NMR of $3\mathbf{k}$ in DMSO- d_6

¹³C NMR of **3k** in DMSO- d_6

¹H NMR of **3**l in DMSO- d_6

¹³C NMR of **3**l in DMSO- d_6

¹H NMR of **3m** in DMSO- d_6

¹³C NMR of **3m** in DMSO- d_6

¹⁹F NMR of **3m** in DMSO- d_6

¹H NMR of **3n** in DMSO- d_6

¹³C NMR of **3n** in DMSO- d_6

¹H NMR of **30** in DMSO- d_6

¹³C NMR of **30** in DMSO- d_6

¹H NMR of **3p** in CDCl₃

¹³C NMR of **3p** in CDCl₃

¹H NMR of 3q in CDCl₃

¹³C NMR of **3q** in CDCl₃

¹H NMR of **3r** in CDCl₃

¹³C NMR of **3r** in CDCl₃

¹H NMR of **3s** in CDCl₃

¹³C NMR of **3s** in CDCl₃

¹⁹F NMR of **3s** in CDCl₃

¹H NMR of **3t** in CDCl₃

¹³C NMR of **3t** in CDCl₃

¹H NMR of **3u** in CDCl₃

^{13}C NMR of 3u in CDCl_3

8. ¹H and ¹³C NMR spectra of iodinated products (4a-4e)

¹H NMR of **4a** in CDCl₃

¹³C NMR of **4a** in CDCl₃

¹H NMR of **4b** in CDCl₃

¹³C NMR of **4b** in CDCl₃

¹H NMR of 4c in CDCl₃

¹³C NMR of **4c** in CDCl₃

¹H NMR of **4d** in CDCl₃

¹³C NMR of **4d** in CDCl₃

¹H NMR of **4e** in CDCl₃

¹³C NMR of **4e** in CDCl₃

9. ¹H and ¹³C NMR spectra of coupling products (5a-5c)

¹H NMR of **5a** in CDCl₃

¹³C NMR of **5a** in CDCl₃

¹H NMR of **5b** in CDCl₃

¹³C NMR of **5b** in CDCl₃

¹H NMR of **5c** in CDCl₃

¹³C NMR of **5c** in CDCl₃

