Electronic Supplementary Information

Role of Urea on Structural, Textural, and Optical Properties of Macroemulsion-assisted Synthesized Holey ZnO Nanosheets for Photocatalytic Applications

Amelia Andriani,^a Didi Prasetyo Benu,^{a,b,c} Vetty Megantari,^a Brian Yuliarto,^{d,e} Rino Rakhmata Mukti,^{a,e,f} Yusuke Ide,^g Silvia Chowdhury,^h Mohammed A. Amin, ⁱ Yusuf Valentino Kaneti,^{h*} and Veinardi Suendo^{a,e*}

- ^{*a.*} Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, 10 Ganesha Street, Bandung 40132, Indonesia.
- ^{b.} Doctoral Program of Chemistry Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, 10 Ganesha Street, Bandung 40132, Indonesia.
- ^{c.} Department of Chemistry, Universitas Timor, Kefamenanu 85613, Indonesia.
- ^{d.} Advanced Functional Materials (AFM) Laboratory, Engineering Physics Department, Institut Teknologi Bandung, 10 Ganesha Street, Bandung 40132, Indonesia.
- ^{e.} Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, 10 Ganesha Street, Bandung 40132, Indonesia.
- ^{f.} Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, 10 Ganesha Street, Bandung 40132, Indonesia.
- ^{g.} International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Tsukuba, Ibaraki 305-0044, Japan.
- ^{h.} Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
- ^{*i.*} Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Taif 21194, Saudi Arabia.

E-mails: v.kaneti@uq.edu.au (Y. V. Kaneti); vsuendo@chem.itb.ac.id (V. Suendo)

Fig. S1. Front view and top view of the six different low-index crystallographic planes in wurtzite ZnO (CIF 2300450, Crystallography Open Database), red and grey atoms represent O and Zn, respectively.

Synthesis method	Morphology	BET surface area (m ² g ⁻¹)	Average pore diameter (nm)	Total pore volume (cm ³ g ⁻¹)	Bandgap energy	Ref.
Homogeneous	Hierarchically structured	84.0	16.0	0.253		
precipitation	aggregates				N/A	1
Interface precipitation	Hierarchically structured aggregates	60.0	27.0	0.242	1071	
Microwave hydrothermal and solvothermal process	Marigold-flower like	16.6	22.0	0.05	3.194	
	Multipod-jasmine- flower like	14.7	19.5	0.07	3.157	
	Sea urchin-rod- flower like	12.6	38.7	0.11	3.153	2
	Calendula-flower like	10.7	11.3	0.02	3.147	
	Rice-grain-shape like	14.9	18.4	0.16	3.114	

Table S1. Recent studies on the morphology-controlled syntheses of zinc oxide and their properties.

Synthesis method	Morphology	BET surface area (m ² g ⁻¹)	Average pore diameter (nm)	Total pore volume (cm ³ g ⁻¹)	Bandgap energy	Ref.
	Prism	15.5				
Solvothermal	Polyhedron	20.1 N/A		N/A	N/A	3
process	Sphere	12.9				
		4.30			2.99	4
	Hexagonal	8.40			3.11	
Hydrothermal	microstructure	27.6	N/A	N/A	3.11	
process		32.0			3.11	
	Doughnuts like	94.7			3.11	
Schlenk	Nanocones	12.1	NT/A	NI/A	3.21	5
techniques	Nanorods	15.6	IN/A	IN/A	3.15	
Mienowaya	Cone-shaped	19.1	14.2	0.0710	3.36	
microwave	Thin platelike	24.8	20.5	0 1147	2.25	6
processing of a	aggregates	24.0	20.3	0.1147	5.55	
precipitate	Cone-shaped	15.5	25.7	0.0732	3.36	
Pafluvad	Nanosheets	83.0	7-16	N/A	3.21	
process	Nanorods	18.0	N/A	N/A	3.18	7
process	Nanodisks	46.0	5-8	N/A	3.15	
Thermal decomposition	Nanopyramids				3.20	8
Hydrothermal	Nanoflakes	IN/A	IN/A	IN/A	3.27	
process	Nanocolumns				3.24	
Undrothormal	Hexagonal column		N/A	N/A	3.15-3.20	9
process	Double hexagonal	N/A			3.13-3.21	
process	column					
Microemulsion	Hexagonal-disk	35.0			3.35	
method	Brick-type	25.0	N/A	N/A	3.33	10
methou	Sharp needle-like	23.0			3.31	
Microwave process	Nanospheroidal	N/A	N/A	N/A	3.20-3.24	11
	Micro-rods				3.16	
	Partly ordered					
Low-	hexagonal prism				3.17	
temperature	rods		N/A	N/A		
hydrothermal	Ordered hexagonal	N/A			3 18	12
processing of a	prism rods				5.10	
precipitate	Ellipsoids				3.19	
	Spheroids				3.20	
	Nanospheres				3.22	

Synthesis method	Morphology	BET surface area (m ² g ⁻¹)	Average pore diameter (nm)	Total pore volume (cm ³ g ⁻¹)	Bandgap energy	Ref.
Simple wet	N. 9				2.40	13
chemical method	Nanoflower	N/A	N/A	N/A	3.40	15
	Hexagonal rods				3.20	
	A mix of thin				-	
	hexagonal rods and				3.22	
Sol-gel	wide slates					
chemical	Globular shaped	N/A	N/A	N/A	3.33	14
process	particle-like					
	structure	-				
	Very short				3 19	
	hexagonal rods				5.17	
Solvothermal	Hexagonal	14.4 N/A		N/A		
process	nanoplates				N/A	15
	Nanorods	7.43				
Hydrothermal	Nanoflakes	20.9	N/A	N/A	N/A	16
process						
Refluxed	Nanosheets	25.7	N/A	N/A	N/A	17
process	T1 1'1					
I hermal	Flower-like	N/A	N/A	N/A	3.37	18
decomposition	nanorods					
Solvothermal	Hexagonal	17.7	NT/A	NI/A	N/A	19
process	Pencil stub-like	4 76	1N/A	IN/A		
Hydrothermal	Flower-like	т./0				
process	cess aggregates 21.8 3.8		3.8	0.042	N/A	20

Sampla	Composition							
name	Zn(CH ₃ COO) ₂ ·2H ₂ O	Urea (g)	CTAB (g)	H ₂ O	Toluene	Butanol		
	(g)			(mL)	(mL)	(mL)		
ZnO_U0	1.4553	0	0.4957	11.87	17.17	1.21		
ZnO_U0.5	1.4457	0.1966	0.4925	11.80	17.06	1.20		
ZnO_U1	1.4363	0.3907	0.4893	11.72	16.95	1.19		
ZnO_U2	1.4179	0.7713	0.4830	11.57	16.73	1.18		

Table S2. Detailed amounts of all chemicals used to synthesize the ZnO products reported in this study.

Fig. S2. Structural analyses of as-synthesized products before calcination: (a) FTIR spectra and (b) XRD patterns.

Sample name	$R_{\rm p}$ (%)	R _{wp} (%)	R_{\exp} (%)	χ^2
ZnO_U0	12.2	15.0	12.4	1.466
ZnO_U0.5	13.1	16.1	15.9	1.030
ZnO_U1	13.2	16.0	15.7	1.039
ZnO_U2	10.0	13.2	12.6	1.860

Table S3. Rietveld refinement parameters of synthesized ZnO samples

Fig. S3. UV-vis diffuse reflectance spectra of as-synthesized samples before calcination: (a) AS_U0, (b) AS_U0.5, (c) AS_U1, and (d) AS_U2.

Fig. S4. It vis diffuse reflectance spectra of the synthesized ZnO samples.

Fig. S5. Photoluminescence spectrum of commercial ZnO (Merck, CAS No:1314-13-2).

Fig. S6. Photoluminescence spectra and the Tauc plot of ZnO_U2 sample, revealing the presence of electronic state inside the bandgap caused by crystal defects.

Fig. S7. Photodegradation of rhodamine B without the ZnO photocatalyst. (a) PL spectra with respect to irradiation time, (b) evolution of PL intensity, and (c) first-order kinetic plot.

References

- 1 R. Gao, Z. Liang, J. Tian, Q. Zhang, L. Wang and G. Cao, *Nano Energy*, 2013, 2, 40–48.
- R. Krishnapriya, S. Praneetha and A. Vadivel Murugan, *CrystEngComm*, 2015, 17, 8353– 8367.
- 3 M. Huang, S. Weng, B. Wang, J. Hu, X. Fu and P. Liu, *J. Phys. Chem. C*, 2014, **118**, 25434–25440.
- 4 R. Boppella, K. Anjaneyulu, P. Basak and S. V. Manorama, *J. Phys. Chem. C*, 2013, **117**, 4597–4605.
- 5 J. Chang, R. Ahmed, H. Wang, H. Liu, R. Li, P. Wang and E. R. Waclawik, J. Phys. Chem. C, 2013, 117, 13836–13844.
- S. Marković, I. Stojković Simatović, S. Ahmetović, L. Veselinović, S. Stojadinović, V. Rac,
 S. D. Škapin, D. Bajuk Bogdanović, I. Janković Častvan and D. Uskoković, *RSC Adv.*, 2019,
 9, 17165–17178.
- 7 T. R. Chetia, M. S. Ansari and M. Qureshi, *ACS Appl. Mater. Interfaces*, 2015, 7, 13266–13279.
- 8 L. Wang, H. Li, S. Xu, Q. Yue and J. Liu, *Mater. Chem. Phys.*, 2014, 147, 1134–1139.
- 9 E. A. Araújo Júnior, F. X. Nobre, G. da S. Sousa, L. S. Cavalcante, M. Rita de Morais Chaves Santos, F. L. Souza and J. M. Elias de Matos, *RSC Adv.*, 2017, 7, 24263–24281.
- A. Iglesias-Juez, F. Viñes, O. Lamiel-García, M. Fernández-García and F. Illas, J. Mater. Chem. A, 2015, 3, 8782–8792.
- S. Marković, V. Rajić, A. Stanković, L. Veselinović, J. Belošević-Čavor, K. Batalović, N. Abazović, S. D. Škapin and D. Uskoković, *Solar Energy*, 2016, **127**, 124–135.
- A. Stanković, Z. Stojanović, L. Veselinović, S. D. Škapin, I. Bračko, S. Marković and D. Uskoković, *Mater. Sci. Eng. B*, 2012, 177, 1038–1045.
- 13 S. Kundu, S. Sain, T. Kar and S. K. Pradhan, *ChemistrySelect*, 2016, 1, 3705–3712.
- 14 K. Davis, R. Yarbrough, M. Froeschle, J. White and H. Rathnayake, *RSC Adv.*, 2019, 9, 14638–14648.
- 15 Y. V. Kaneti, Z. Zhang, J. Yue, Q. M. D. Zakaria, C. Chen, X. Jiang and A. Yu, *Phys. Chem. Chem. Phys.*, 2014, 16, 11471–11480.
- 16 Y. V. Kaneti, J. Yue, X. Jiang and A. Yu, J. Phys. Chem. C, 2013, 117, 13153–13162.

- B. Liu, J. Xu, S. Ran, Z. Wang, D. Chen and G. Shen, *CrystEngComm*, 2012, 14, 4582–4588.
- 18 B. Madavali, H.-S. Kim and S.-J. Hong, *Mater. Lett.*, 2014, **132**, 342–345.
- 19 Y. Liu, D. Huang, H. Liu, T. Li and J. Wang, Cryst. Growth Des., 2019, 19, 2758–2764.
- 20 V. Cauda, D. Pugliese, N. Garino, A. Sacco, S. Bianco, F. Bella, A. Lamberti and C. Gerbaldi, *Energy*, 2014, 65, 639–646.