Electronic Supplementary Information (ESI) for:

Assessment of Time-Dependent Density Functionals for the Electronic Excitation Energies of Organic Dyes Used in DSSCs

Qabas Alkhatib, a Wissam Helal,* a and Akef T. Afaneh b

a Department of Chemistry, The University of Jordan, Amman 11942, Jordan.
b Department of Chemistry, Al-Balqa Applied University, 19117 Al-Salt, Jordan.
* Corresponding author: wissam.helal@ju.edu.jo

List of Tables

Table S1 Vertical Excitation Energies (eV) Using GGA Functionals. S4
Table S2 Vertical Excitation Energies (eV) Using GH-GGA Functionals. . . S4
Table S3 Vertical Excitation Energies (eV) Using mGGA and GH-mGGA Functionals. S5
Table S4 Vertical Excitation Energies (eV) Using RSH-GGA Functionals. . . S5
Table S5 Vertical Excitation Energies (eV) Using DH-GGA and RSDH-GGA Functionals. S6
Table S6 Excited state properties calculated with the OLYP functional. . . . S6
Table S7 Excited state properties calculated with the BLYP functional. . . . S7
Table S8 Excited state properties calculated with the BP86 functional. . . . S7
Table S9 Excited state properties calculated with the XLYP functional. . . . S8
Table S10 Excited state properties calculated with the PBE functional. . . . S8
Table S11 Excited state properties calculated with the mPWPW functional. . S9
Table S12 Excited state properties calculated with the mPWLYP functional. S9
Table S13 Excited state properties calculated with the B97-D3 functional. . S10
Table S14 Excited state properties calculated with the M06-L functional. . S10
Table S15 Excited state properties calculated with the TPSS functional. . S11
Table S16 Excited state properties calculated with the O3LYP functional. . S11
Table S17 Excited state properties calculated with the B3LYP functional. . S12
Table S18 Excited state properties calculated with the B3P86 functional. . S12
Table S19 Excited state properties calculated with the X3LYP functional. . S13
Table S20 Excited state properties calculated with the PBE0 functional. . S13
Table S21 Excited state properties calculated with the mPW1PW functional. S14
Table S22 Excited state properties calculated with the mPW1LYP functional. S14
Table S23 Excited state properties calculated with the BH&HLYP functional. S15
Table S24 Excited state properties calculated with the TPSSh functional. . S15
Table S25 Excited state properties calculated with the TPSS0 functional. . S16
Table S26 Excited state properties calculated with the M06 functional. . S16
Table S27 Excited state properties calculated with the M06-2X functional. . S17
Table S28 Excited state properties calculated with the LC-BLYP functional. . S17
Table S29 Excited state properties calculated with the CAM-B3LYP functional. S18
Table S30 Excited state properties calculated with the ωB97 functional. . S18
Table S31 Excited state properties calculated with the ωB97X functional. . S19
Table S32 Excited state properties calculated with the ωB97X-D3 functional. S19
Table S33 Excited state properties calculated with the ωB97X-D3(BJ) functional. S20
Table S34 Excited state properties calculated with the ωB97X-V functional. . S20
Table S35 Excited state properties calculated with the B2PLYP functional. . S21
Table S36 Excited state properties calculated with the B2GPPLYP functional. S21
Table S37 Excited state properties calculated with the mPW2PLYP functional. S22
Table S38 Excited state properties calculated with the DSD-BLYP functional. S22
Table S39 Excited state properties calculated with the DSD-PBEP86 functional. S23
Table S40 Excited state properties calculated with the ωB2PLYP functional. S23
Table S41 Excited state properties calculated with the ωB2GPPLYP functional. S24

List of Figures

Figure S1 Relative maximum errors (Max) of TD-DFT excitation energies. . S24
Figure S2 Relative minimum errors (Min) of TD-DFT excitation energies. . S25
Figure S3 Linear determination coefficients (R^2) of TD-DFT excitation energies. S25
Figure S4 Molecular orbitals (HOMO-1, HOMO, LUOM and LUMO+1) involved in the main transitions of the dye sensitizers (N1–N13). Isosurface value = 0.02. S26
Figure S4 (Cont.) Molecular orbitals (HOMO-1, HOMO, LUOM and LUMO+1) involved in the main transitions of the dye sensitizers (N1–N13). Isosurface value = 0.02. S27
Table S1: Vertical Excitation Energies (eV) Using GGA Functionals.

<table>
<thead>
<tr>
<th></th>
<th>OLYP</th>
<th>BLYP</th>
<th>BP86</th>
<th>XLYP</th>
<th>PBE</th>
<th>mPW PW</th>
<th>mPW LYP</th>
<th>B97-D3</th>
<th>Exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>1.621</td>
<td>1.603</td>
<td>1.626</td>
<td>1.602</td>
<td>1.633</td>
<td>1.622</td>
<td>1.604</td>
<td>1.609</td>
<td>2.743</td>
</tr>
<tr>
<td>N2</td>
<td>1.529</td>
<td>1.507</td>
<td>1.497</td>
<td>1.511</td>
<td>1.489</td>
<td>1.496</td>
<td>1.507</td>
<td>1.537</td>
<td>2.666</td>
</tr>
<tr>
<td>N3</td>
<td>1.225</td>
<td>1.157</td>
<td>1.161</td>
<td>1.160</td>
<td>1.163</td>
<td>1.164</td>
<td>1.151</td>
<td>1.186</td>
<td>2.495</td>
</tr>
<tr>
<td>N4</td>
<td>1.139</td>
<td>1.102</td>
<td>1.124</td>
<td>1.101</td>
<td>1.134</td>
<td>1.126</td>
<td>1.102</td>
<td>1.115</td>
<td>2.331</td>
</tr>
<tr>
<td>N5</td>
<td>1.832</td>
<td>1.797</td>
<td>1.815</td>
<td>1.798</td>
<td>1.820</td>
<td>1.814</td>
<td>1.796</td>
<td>1.821</td>
<td>2.407</td>
</tr>
<tr>
<td>N6</td>
<td>1.978</td>
<td>1.954</td>
<td>1.976</td>
<td>1.951</td>
<td>1.975</td>
<td>1.976</td>
<td>1.953</td>
<td>1.963</td>
<td>2.422</td>
</tr>
<tr>
<td>N7</td>
<td>1.977</td>
<td>1.935</td>
<td>1.939</td>
<td>1.936</td>
<td>1.932</td>
<td>1.937</td>
<td>1.925</td>
<td>1.976</td>
<td>2.799</td>
</tr>
<tr>
<td>N8</td>
<td>1.352</td>
<td>1.321</td>
<td>1.346</td>
<td>1.321</td>
<td>1.342</td>
<td>1.342</td>
<td>1.317</td>
<td>1.373</td>
<td>2.530</td>
</tr>
<tr>
<td>N9</td>
<td>1.048</td>
<td>1.020</td>
<td>1.037</td>
<td>1.020</td>
<td>1.037</td>
<td>1.036</td>
<td>1.018</td>
<td>1.046</td>
<td>2.743</td>
</tr>
<tr>
<td>N10</td>
<td>1.611</td>
<td>1.578</td>
<td>1.609</td>
<td>1.576</td>
<td>1.615</td>
<td>1.607</td>
<td>1.577</td>
<td>1.603</td>
<td>2.755</td>
</tr>
<tr>
<td>N11</td>
<td>2.194</td>
<td>2.171</td>
<td>2.178</td>
<td>2.171</td>
<td>2.178</td>
<td>2.178</td>
<td>2.169</td>
<td>2.193</td>
<td>2.362</td>
</tr>
<tr>
<td>N12</td>
<td>2.116</td>
<td>2.090</td>
<td>2.106</td>
<td>2.083</td>
<td>2.107</td>
<td>2.112</td>
<td>2.090</td>
<td>2.123</td>
<td>2.300</td>
</tr>
<tr>
<td>N13</td>
<td>1.728</td>
<td>1.688</td>
<td>1.693</td>
<td>1.692</td>
<td>1.681</td>
<td>1.690</td>
<td>1.678</td>
<td>1.734</td>
<td>2.357</td>
</tr>
<tr>
<td>MAE</td>
<td>0.889</td>
<td>0.922</td>
<td>0.908</td>
<td>0.922</td>
<td>0.908</td>
<td>0.908</td>
<td>0.925</td>
<td>0.895</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>-1.695</td>
<td>-1.911</td>
<td>-1.874</td>
<td>-1.911</td>
<td>-1.874</td>
<td>-1.874</td>
<td>-1.938</td>
<td>-1.695</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>0.073</td>
<td>0.070</td>
<td>0.070</td>
<td>0.070</td>
<td>0.071</td>
<td>0.071</td>
<td>0.070</td>
<td>0.070</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>0.073</td>
<td>0.070</td>
<td>0.070</td>
<td>0.069</td>
<td>0.071</td>
<td>0.073</td>
<td>0.071</td>
<td>0.070</td>
<td></td>
</tr>
</tbody>
</table>

Table S2: Vertical Excitation Energies (eV) Using GH-GGA Functionals.

<table>
<thead>
<tr>
<th></th>
<th>O3LYP</th>
<th>B3LYP</th>
<th>B3P86</th>
<th>X3LYP</th>
<th>PBE0</th>
<th>mPW1 PW</th>
<th>mPW1 LYP</th>
<th>BH&H LYP</th>
<th>Exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>0.901</td>
<td>1.262</td>
<td>1.273</td>
<td>1.346</td>
<td>1.511</td>
<td>1.514</td>
<td>1.499</td>
<td>2.483</td>
<td>2.743</td>
</tr>
<tr>
<td>N2</td>
<td>1.429</td>
<td>1.170</td>
<td>1.173</td>
<td>1.292</td>
<td>1.521</td>
<td>1.523</td>
<td>1.508</td>
<td>2.475</td>
<td>2.666</td>
</tr>
<tr>
<td>N3</td>
<td>1.024</td>
<td>1.375</td>
<td>1.376</td>
<td>1.452</td>
<td>1.593</td>
<td>1.596</td>
<td>1.596</td>
<td>2.594</td>
<td>2.495</td>
</tr>
<tr>
<td>N4</td>
<td>1.606</td>
<td>1.939</td>
<td>1.945</td>
<td>2.010</td>
<td>2.136</td>
<td>2.136</td>
<td>2.133</td>
<td>2.846</td>
<td>2.331</td>
</tr>
<tr>
<td>N5</td>
<td>2.736</td>
<td>1.066</td>
<td>1.075</td>
<td>1.140</td>
<td>1.289</td>
<td>1.290</td>
<td>1.275</td>
<td>2.340</td>
<td>2.407</td>
</tr>
<tr>
<td>N6</td>
<td>2.173</td>
<td>1.561</td>
<td>1.536</td>
<td>1.724</td>
<td>1.981</td>
<td>1.996</td>
<td>2.018</td>
<td>2.659</td>
<td>2.422</td>
</tr>
<tr>
<td>N7</td>
<td>1.698</td>
<td>1.377</td>
<td>1.380</td>
<td>1.472</td>
<td>1.652</td>
<td>1.653</td>
<td>1.658</td>
<td>2.903</td>
<td>2.799</td>
</tr>
<tr>
<td>N8</td>
<td>1.950</td>
<td>1.292</td>
<td>1.287</td>
<td>1.401</td>
<td>1.594</td>
<td>1.601</td>
<td>1.604</td>
<td>2.656</td>
<td>2.530</td>
</tr>
<tr>
<td>N9</td>
<td>1.471</td>
<td>0.843</td>
<td>0.837</td>
<td>0.958</td>
<td>1.160</td>
<td>1.172</td>
<td>1.184</td>
<td>2.590</td>
<td>2.743</td>
</tr>
<tr>
<td>N10</td>
<td>1.147</td>
<td>1.461</td>
<td>1.470</td>
<td>1.533</td>
<td>1.670</td>
<td>1.673</td>
<td>1.665</td>
<td>2.619</td>
<td>2.755</td>
</tr>
<tr>
<td>N11</td>
<td>1.024</td>
<td>0.837</td>
<td>0.842</td>
<td>0.956</td>
<td>1.182</td>
<td>1.187</td>
<td>1.186</td>
<td>2.513</td>
<td>2.362</td>
</tr>
<tr>
<td>N12</td>
<td>1.579</td>
<td>1.039</td>
<td>1.066</td>
<td>1.183</td>
<td>1.429</td>
<td>1.436</td>
<td>1.427</td>
<td>2.807</td>
<td>2.300</td>
</tr>
<tr>
<td>N13</td>
<td>0.981</td>
<td>1.296</td>
<td>1.289</td>
<td>1.361</td>
<td>1.475</td>
<td>1.481</td>
<td>1.487</td>
<td>2.533</td>
<td>2.357</td>
</tr>
<tr>
<td>MAE</td>
<td>1.065</td>
<td>1.261</td>
<td>1.259</td>
<td>1.160</td>
<td>0.978</td>
<td>0.973</td>
<td>0.975</td>
<td>0.209</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>-1.842</td>
<td>-1.900</td>
<td>-1.785</td>
<td>-1.583</td>
<td>-1.571</td>
<td>-1.559</td>
<td>-0.260</td>
<td>0.515</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>0.043</td>
<td>0.007</td>
<td>0.008</td>
<td>0.010</td>
<td>0.013</td>
<td>0.013</td>
<td>0.014</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>0.043</td>
<td>0.007</td>
<td>0.008</td>
<td>0.010</td>
<td>0.013</td>
<td>0.013</td>
<td>0.014</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

\[R^2 \]
Table S3: Vertical Excitation Energies (eV) Using mGGA and GH-mGGA Functionals.

<table>
<thead>
<tr>
<th></th>
<th>M06-L</th>
<th>TPSS</th>
<th>TPSSh</th>
<th>TPSS0</th>
<th>M060</th>
<th>M06-2X</th>
<th>Exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>1.792</td>
<td>1.701</td>
<td>2.202</td>
<td>1.571</td>
<td>1.678</td>
<td>2.493</td>
<td>2.743</td>
</tr>
<tr>
<td>N2</td>
<td>1.046</td>
<td>1.555</td>
<td>1.434</td>
<td>1.581</td>
<td>1.729</td>
<td>2.526</td>
<td>2.666</td>
</tr>
<tr>
<td>N3</td>
<td>2.413</td>
<td>2.275</td>
<td>2.507</td>
<td>1.651</td>
<td>1.737</td>
<td>2.542</td>
<td>2.495</td>
</tr>
<tr>
<td>N4</td>
<td>1.280</td>
<td>1.165</td>
<td>1.585</td>
<td>2.183</td>
<td>2.323</td>
<td>2.727</td>
<td>2.331</td>
</tr>
<tr>
<td>N5</td>
<td>2.082</td>
<td>1.916</td>
<td>2.736</td>
<td>3.031</td>
<td>2.927</td>
<td>2.353</td>
<td>2.407</td>
</tr>
<tr>
<td>N6</td>
<td>2.086</td>
<td>2.016</td>
<td>2.201</td>
<td>2.092</td>
<td>2.208</td>
<td>2.641</td>
<td>2.422</td>
</tr>
<tr>
<td>N7</td>
<td>2.195</td>
<td>2.081</td>
<td>2.392</td>
<td>2.649</td>
<td>2.592</td>
<td>2.908</td>
<td>2.799</td>
</tr>
<tr>
<td>N8</td>
<td>1.602</td>
<td>1.470</td>
<td>1.990</td>
<td>1.663</td>
<td>1.818</td>
<td>2.722</td>
<td>2.530</td>
</tr>
<tr>
<td>N9</td>
<td>1.207</td>
<td>1.109</td>
<td>1.491</td>
<td>1.256</td>
<td>1.458</td>
<td>2.597</td>
<td>2.743</td>
</tr>
<tr>
<td>N10</td>
<td>1.844</td>
<td>1.701</td>
<td>1.189</td>
<td>1.748</td>
<td>1.753</td>
<td>2.551</td>
<td>2.755</td>
</tr>
<tr>
<td>N11</td>
<td>2.323</td>
<td>2.241</td>
<td>1.028</td>
<td>1.261</td>
<td>1.452</td>
<td>2.475</td>
<td>2.362</td>
</tr>
<tr>
<td>N12</td>
<td>0.997</td>
<td>1.964</td>
<td>1.568</td>
<td>1.512</td>
<td>1.659</td>
<td>2.741</td>
<td>2.300</td>
</tr>
<tr>
<td>N13</td>
<td>2.061</td>
<td>1.885</td>
<td>1.029</td>
<td>1.571</td>
<td>1.510</td>
<td>2.438</td>
<td>2.357</td>
</tr>
</tbody>
</table>

MAE 0.768 0.756 0.788 0.799 0.707 0.184
Max -0.039 -0.121 0.329 0.624 0.520 0.441
Min -1.620 -1.634 -1.566 -1.487 -1.285 -0.250
SD 0.002 0.060 0.017 0.001 0.001 0.030
R² 0.002 0.060 0.017 0.001 0.001 0.029

Table S4: Vertical Excitation Energies (eV) Using RSH-GGA Functionals.

<table>
<thead>
<tr>
<th></th>
<th>LC-BLYP</th>
<th>CAM-B3LYP</th>
<th>ωB97X</th>
<th>ωB97X-D3</th>
<th>ωB97X-D3(BJ)</th>
<th>ωB97X-V</th>
<th>Exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>2.853</td>
<td>2.559</td>
<td>2.961</td>
<td>2.889</td>
<td>2.828</td>
<td>2.908</td>
<td>2.743</td>
</tr>
<tr>
<td>N2</td>
<td>2.822</td>
<td>2.566</td>
<td>2.914</td>
<td>2.842</td>
<td>2.782</td>
<td>2.860</td>
<td>2.666</td>
</tr>
<tr>
<td>N3</td>
<td>2.957</td>
<td>2.633</td>
<td>3.089</td>
<td>3.007</td>
<td>2.931</td>
<td>3.033</td>
<td>2.495</td>
</tr>
<tr>
<td>N4</td>
<td>2.971</td>
<td>2.786</td>
<td>3.162</td>
<td>3.065</td>
<td>2.986</td>
<td>3.093</td>
<td>2.331</td>
</tr>
<tr>
<td>N6</td>
<td>2.826</td>
<td>2.654</td>
<td>2.936</td>
<td>2.864</td>
<td>2.806</td>
<td>2.885</td>
<td>2.422</td>
</tr>
<tr>
<td>N7</td>
<td>3.079</td>
<td>2.910</td>
<td>3.180</td>
<td>3.112</td>
<td>3.058</td>
<td>3.133</td>
<td>2.799</td>
</tr>
<tr>
<td>N8</td>
<td>3.064</td>
<td>2.737</td>
<td>3.191</td>
<td>3.090</td>
<td>3.030</td>
<td>3.108</td>
<td>2.530</td>
</tr>
<tr>
<td>N9</td>
<td>2.928</td>
<td>2.657</td>
<td>3.034</td>
<td>2.955</td>
<td>2.885</td>
<td>2.976</td>
<td>2.743</td>
</tr>
<tr>
<td>N11</td>
<td>2.693</td>
<td>2.535</td>
<td>2.793</td>
<td>2.737</td>
<td>2.688</td>
<td>2.761</td>
<td>2.362</td>
</tr>
<tr>
<td>N12</td>
<td>2.971</td>
<td>2.789</td>
<td>3.146</td>
<td>3.058</td>
<td>2.984</td>
<td>3.088</td>
<td>2.300</td>
</tr>
</tbody>
</table>

MAE 0.424 0.198 0.563 0.476 0.398 0.499 0.499
Max 0.783 0.489 1.022 0.871 0.729 0.896 0.896
Min 0.110 -0.184 0.218 0.146 0.085 0.165 0.165
SD 0.227 0.134 0.266 0.248 0.229 0.251 0.251
R² 0.000 0.016 0.029 0.016 0.004 0.021 0.021
Table S5: Vertical Excitation Energies (eV) Using DH-GGA and RSDH-GGA Functionals.

<table>
<thead>
<tr>
<th></th>
<th>B2PLYP</th>
<th>B2GPPLYP</th>
<th>mPW2PLYP</th>
<th>DSDBLYP</th>
<th>DSDPBE86</th>
<th>ωB2PLYP</th>
<th>ωB2GPPLYP</th>
<th>Exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>2.192</td>
<td>2.463</td>
<td>2.285</td>
<td>2.329</td>
<td>2.227</td>
<td>2.852</td>
<td>2.844</td>
<td>2.743</td>
</tr>
<tr>
<td>N2</td>
<td>2.297</td>
<td>2.509</td>
<td>2.362</td>
<td>2.515</td>
<td>2.430</td>
<td>2.833</td>
<td>2.834</td>
<td>2.666</td>
</tr>
<tr>
<td>N3</td>
<td>2.205</td>
<td>2.524</td>
<td>2.319</td>
<td>2.291</td>
<td>2.152</td>
<td>2.968</td>
<td>2.956</td>
<td>2.495</td>
</tr>
<tr>
<td>N4</td>
<td>2.369</td>
<td>2.566</td>
<td>2.468</td>
<td>1.987</td>
<td>1.853</td>
<td>2.987</td>
<td>2.968</td>
<td>2.331</td>
</tr>
<tr>
<td>N5</td>
<td>1.739</td>
<td>2.416</td>
<td>1.910</td>
<td>2.502</td>
<td>2.198</td>
<td>3.207</td>
<td>3.209</td>
<td>2.407</td>
</tr>
<tr>
<td>N6</td>
<td>2.401</td>
<td>2.523</td>
<td>2.456</td>
<td>2.269</td>
<td>2.194</td>
<td>2.803</td>
<td>2.787</td>
<td>2.422</td>
</tr>
<tr>
<td>N7</td>
<td>2.743</td>
<td>2.874</td>
<td>2.787</td>
<td>2.811</td>
<td>2.749</td>
<td>3.107</td>
<td>3.108</td>
<td>2.799</td>
</tr>
<tr>
<td>N8</td>
<td>2.432</td>
<td>2.696</td>
<td>2.513</td>
<td>2.674</td>
<td>2.569</td>
<td>3.100</td>
<td>3.102</td>
<td>2.530</td>
</tr>
<tr>
<td>N9</td>
<td>2.362</td>
<td>2.627</td>
<td>2.446</td>
<td>2.595</td>
<td>2.490</td>
<td>2.970</td>
<td>2.975</td>
<td>2.743</td>
</tr>
<tr>
<td>N10</td>
<td>2.210</td>
<td>2.531</td>
<td>2.327</td>
<td>2.226</td>
<td>2.081</td>
<td>3.020</td>
<td>3.008</td>
<td>2.755</td>
</tr>
<tr>
<td>N11</td>
<td>2.240</td>
<td>2.417</td>
<td>2.313</td>
<td>2.153</td>
<td>2.070</td>
<td>2.695</td>
<td>2.682</td>
<td>2.362</td>
</tr>
<tr>
<td>N12</td>
<td>2.287</td>
<td>2.490</td>
<td>2.393</td>
<td>2.008</td>
<td>1.750</td>
<td>2.963</td>
<td>2.994</td>
<td>2.300</td>
</tr>
<tr>
<td>N13</td>
<td>1.906</td>
<td>2.355</td>
<td>2.067</td>
<td>1.798</td>
<td>1.544</td>
<td>3.158</td>
<td>3.133</td>
<td>2.357</td>
</tr>
<tr>
<td>MAE</td>
<td>0.277</td>
<td>0.126</td>
<td>0.215</td>
<td>0.250</td>
<td>0.360</td>
<td>0.443</td>
<td>0.438</td>
<td>0.438</td>
</tr>
<tr>
<td>Max</td>
<td>0.038</td>
<td>0.235</td>
<td>0.137</td>
<td>0.144</td>
<td>0.039</td>
<td>0.801</td>
<td>0.802</td>
<td>0.802</td>
</tr>
<tr>
<td>Min</td>
<td>-0.668</td>
<td>-0.280</td>
<td>-0.497</td>
<td>-0.559</td>
<td>-0.813</td>
<td>0.109</td>
<td>0.101</td>
<td>0.101</td>
</tr>
<tr>
<td>SD</td>
<td>0.232</td>
<td>0.091</td>
<td>0.175</td>
<td>0.167</td>
<td>0.233</td>
<td>0.236</td>
<td>0.236</td>
<td>0.236</td>
</tr>
<tr>
<td>R^2</td>
<td>0.163</td>
<td>0.293</td>
<td>0.158</td>
<td>0.452</td>
<td>0.506</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Table S6: Excited state properties calculated with the OLYP functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation (coefficient)</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>$S_0 \rightarrow S_3$</td>
<td>764.7</td>
<td>1.621</td>
<td>0.290</td>
<td>H-1\rightarrowL (0.434)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>$S_0 \rightarrow S_3$</td>
<td>810.8</td>
<td>1.529</td>
<td>0.711</td>
<td>H-1\rightarrowL (0.849)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>$S_0 \rightarrow S_2$</td>
<td>1012.4</td>
<td>1.225</td>
<td>0.031</td>
<td>H\rightarrowL (0.921)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>$S_0 \rightarrow S_1$</td>
<td>1088.1</td>
<td>1.139</td>
<td>0.341</td>
<td>H\rightarrowL (0.869)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>$S_0 \rightarrow S_4$</td>
<td>676.9</td>
<td>1.832</td>
<td>0.101</td>
<td>H-3\rightarrowL (0.779)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>$S_0 \rightarrow S_2$</td>
<td>626.8</td>
<td>1.978</td>
<td>0.478</td>
<td>H-1\rightarrowL (0.800)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>$S_0 \rightarrow S_4$</td>
<td>627.2</td>
<td>1.977</td>
<td>0.873</td>
<td>H-1\rightarrowL (0.767)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>$S_0 \rightarrow S_3$</td>
<td>916.9</td>
<td>1.352</td>
<td>0.358</td>
<td>H-1\rightarrowL (0.902)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>$S_0 \rightarrow S_3$</td>
<td>1182.5</td>
<td>1.048</td>
<td>0.280</td>
<td>H-1\rightarrowL (0.901)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>$S_0 \rightarrow S_3$</td>
<td>769.4</td>
<td>1.611</td>
<td>0.117</td>
<td>H-3\rightarrowL (0.603)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>$S_0 \rightarrow S_5$</td>
<td>565.0</td>
<td>2.194</td>
<td>0.784</td>
<td>H-1\rightarrowL+1 (0.551)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>$S_0 \rightarrow S_7$</td>
<td>585.8</td>
<td>2.116</td>
<td>0.195</td>
<td>H-2\rightarrowL (0.441)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>$S_0 \rightarrow S_4$</td>
<td>717.3</td>
<td>1.728</td>
<td>0.128</td>
<td>H-1\rightarrowL (0.870)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>
Table S7: Excited state properties calculated with the BLYP functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation (coefficient)</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>$S_0 \rightarrow S_3$</td>
<td>773.6</td>
<td>1.603</td>
<td>0.290</td>
<td>H-1\rightarrowL (0.429)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>$S_0 \rightarrow S_3$</td>
<td>822.8</td>
<td>1.507</td>
<td>0.708</td>
<td>H\rightarrowL (0.844)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>$S_0 \rightarrow S_2$</td>
<td>1071.2</td>
<td>1.157</td>
<td>0.026</td>
<td>H\rightarrowL (0.937)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>$S_0 \rightarrow S_1$</td>
<td>1125.5</td>
<td>1.102</td>
<td>0.323</td>
<td>H\rightarrowL (0.866)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>$S_0 \rightarrow S_4$</td>
<td>690.1</td>
<td>1.797</td>
<td>0.095</td>
<td>H-3\rightarrowL (0.785)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>$S_0 \rightarrow S_2$</td>
<td>634.6</td>
<td>1.954</td>
<td>0.460</td>
<td>H-1\rightarrowL (0.768)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>$S_0 \rightarrow S_4$</td>
<td>640.8</td>
<td>1.935</td>
<td>0.845</td>
<td>H-1\rightarrowL (0.757)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>$S_0 \rightarrow S_3$</td>
<td>938.6</td>
<td>1.321</td>
<td>0.351</td>
<td>H-1\rightarrowL (0.903)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>$S_0 \rightarrow S_3$</td>
<td>1215.2</td>
<td>1.020</td>
<td>0.270</td>
<td>H-1\rightarrowL (0.897)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>$S_0 \rightarrow S_3$</td>
<td>785.7</td>
<td>1.578</td>
<td>0.119</td>
<td>H-3\rightarrowL (0.593)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>$S_0 \rightarrow S_5$</td>
<td>571.0</td>
<td>2.171</td>
<td>0.769</td>
<td>H-1\rightarrowL+1 (0.547)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>$S_0 \rightarrow S_7$</td>
<td>593.4</td>
<td>2.090</td>
<td>0.187</td>
<td>H-2\rightarrowL (0.433)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>$S_0 \rightarrow S_4$</td>
<td>734.6</td>
<td>1.688</td>
<td>0.123</td>
<td>H-1\rightarrowL (0.870)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>

Table S8: Excited state properties calculated with the BP86 functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation (coefficient)</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>$S_0 \rightarrow S_3$</td>
<td>762.4</td>
<td>1.626</td>
<td>0.294</td>
<td>H-1\rightarrowL (0.423)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>$S_0 \rightarrow S_3$</td>
<td>828.0</td>
<td>1.497</td>
<td>0.683</td>
<td>H-1\rightarrowL (0.851)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>$S_0 \rightarrow S_2$</td>
<td>1068.3</td>
<td>1.161</td>
<td>0.024</td>
<td>H-1\rightarrowL (0.934)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>$S_0 \rightarrow S_1$</td>
<td>1103.3</td>
<td>1.124</td>
<td>0.342</td>
<td>H-1\rightarrowL (0.866)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>$S_0 \rightarrow S_3$</td>
<td>683.0</td>
<td>1.815</td>
<td>0.097</td>
<td>H-3\rightarrowL (0.784)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>$S_0 \rightarrow S_2$</td>
<td>627.6</td>
<td>1.976</td>
<td>0.444</td>
<td>H-1\rightarrowL (0.728)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>$S_0 \rightarrow S_4$</td>
<td>639.3</td>
<td>1.939</td>
<td>0.839</td>
<td>H-1\rightarrowL (0.756)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>$S_0 \rightarrow S_3$</td>
<td>920.9</td>
<td>1.346</td>
<td>0.361</td>
<td>H-1\rightarrowL (0.903)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>$S_0 \rightarrow S_3$</td>
<td>1195.7</td>
<td>1.037</td>
<td>0.281</td>
<td>H-1\rightarrowL (0.901)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>$S_0 \rightarrow S_3$</td>
<td>770.4</td>
<td>1.609</td>
<td>0.126</td>
<td>H-3\rightarrowL (0.587)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>$S_0 \rightarrow S_5$</td>
<td>569.2</td>
<td>2.178</td>
<td>0.790</td>
<td>H-1\rightarrowL+1 (0.564)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>$S_0 \rightarrow S_7$</td>
<td>588.9</td>
<td>2.106</td>
<td>0.147</td>
<td>H-2\rightarrowL (0.392)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>$S_0 \rightarrow S_4$</td>
<td>732.4</td>
<td>1.693</td>
<td>0.124</td>
<td>H-1\rightarrowL (0.864)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>
Table S9: Excited state properties calculated with the XLYP functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation (coefficient)</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>S$_0 \rightarrow$ S$_3$</td>
<td>773.9</td>
<td>1.602</td>
<td>0.291</td>
<td>H-1\rightarrowL (0.430)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>S$_0 \rightarrow$ S$_3$</td>
<td>820.3</td>
<td>1.511</td>
<td>0.715</td>
<td>H\rightarrowL (0.843)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>S$_0 \rightarrow$ S$_2$</td>
<td>1069.0</td>
<td>1.160</td>
<td>0.026</td>
<td>H\rightarrowL (0.937)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>1126.5</td>
<td>1.101</td>
<td>0.320</td>
<td>H\rightarrowL (0.866)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>S$_0 \rightarrow$ S$_4$</td>
<td>689.7</td>
<td>1.798</td>
<td>0.096</td>
<td>H-3\rightarrowL (0.784)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>S$_0 \rightarrow$ S$_2$</td>
<td>635.5</td>
<td>1.951</td>
<td>0.462</td>
<td>H-1\rightarrowL (0.775)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>S$_0 \rightarrow$ S$_4$</td>
<td>640.5</td>
<td>1.936</td>
<td>0.846</td>
<td>H-1\rightarrowL (0.757)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>S$_0 \rightarrow$ S$_3$</td>
<td>938.8</td>
<td>1.321</td>
<td>0.351</td>
<td>H-1\rightarrowL (0.903)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>S$_0 \rightarrow$ S$_3$</td>
<td>1216.0</td>
<td>1.020</td>
<td>0.269</td>
<td>H-1\rightarrowL (0.896)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>S$_0 \rightarrow$ S$_3$</td>
<td>786.7</td>
<td>1.576</td>
<td>0.118</td>
<td>H-3\rightarrowL (0.597)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>S$_0 \rightarrow$ S$_5$</td>
<td>571.0</td>
<td>2.171</td>
<td>0.769</td>
<td>H-1\rightarrowL+1 (0.547)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>S$_0 \rightarrow$ S$_7$</td>
<td>595.1</td>
<td>2.083</td>
<td>0.190</td>
<td>H-2\rightarrowL (0.435)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>S$_0 \rightarrow$ S$_4$</td>
<td>732.8</td>
<td>1.692</td>
<td>0.123</td>
<td>H-1\rightarrowL (0.870)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>

Table S10: Excited state properties calculated with the PBE functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation (coefficient)</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>S$_0 \rightarrow$ S$_3$</td>
<td>759.1</td>
<td>1.633</td>
<td>0.295</td>
<td>H-1\rightarrowL (0.420)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>S$_0 \rightarrow$ S$_3$</td>
<td>832.5</td>
<td>1.489</td>
<td>0.668</td>
<td>H-1\rightarrowL (0.853)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>S$_0 \rightarrow$ S$_2$</td>
<td>1066.4</td>
<td>1.163</td>
<td>0.024</td>
<td>H-1\rightarrowL (0.933)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>1093.4</td>
<td>1.134</td>
<td>0.349</td>
<td>H-1\rightarrowL (0.865)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>S$_0 \rightarrow$ S$_3$</td>
<td>681.3</td>
<td>1.820</td>
<td>0.097</td>
<td>H-3\rightarrowL (0.783)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>S$_0 \rightarrow$ S$_2$</td>
<td>627.7</td>
<td>1.975</td>
<td>0.423</td>
<td>H-1\rightarrowL (0.683)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>S$_0 \rightarrow$ S$_4$</td>
<td>641.8</td>
<td>1.932</td>
<td>0.825</td>
<td>H-1\rightarrowL (0.753)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>S$_0 \rightarrow$ S$_3$</td>
<td>924.1</td>
<td>1.342</td>
<td>0.358</td>
<td>H-1\rightarrowL (0.903)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>S$_0 \rightarrow$ S$_3$</td>
<td>1195.4</td>
<td>1.037</td>
<td>0.281</td>
<td>H-1\rightarrowL (0.902)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>S$_0 \rightarrow$ S$_3$</td>
<td>767.9</td>
<td>1.615</td>
<td>0.130</td>
<td>H-3\rightarrowL (0.577)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>S$_0 \rightarrow$ S$_5$</td>
<td>569.4</td>
<td>2.178</td>
<td>0.787</td>
<td>H-1\rightarrowL (0.563)+1</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>S$_0 \rightarrow$ S$_7$</td>
<td>588.4</td>
<td>2.107</td>
<td>0.149</td>
<td>H-2\rightarrowL (0.394)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>S$_0 \rightarrow$ S$_4$</td>
<td>737.5</td>
<td>1.681</td>
<td>0.121</td>
<td>H-1\rightarrowL (0.866)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>
Table S11: Excited state properties calculated with the mPWPW functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation (coefficient)</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>$S_0 \rightarrow S_3$</td>
<td>764.4</td>
<td>1.622</td>
<td>0.290</td>
<td>H-1\rightarrowL (0.422)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>$S_0 \rightarrow S_3$</td>
<td>828.7</td>
<td>1.496</td>
<td>0.679</td>
<td>H\rightarrowL (0.851)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>$S_0 \rightarrow S_2$</td>
<td>1065.3</td>
<td>1.164</td>
<td>0.024</td>
<td>H\rightarrowL (0.933)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>$S_0 \rightarrow S_1$</td>
<td>1101.4</td>
<td>1.126</td>
<td>0.343</td>
<td>H\rightarrowL (0.866)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>$S_0 \rightarrow S_4$</td>
<td>683.3</td>
<td>1.814</td>
<td>0.096</td>
<td>H-3\rightarrowL (0.784)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>$S_0 \rightarrow S_2$</td>
<td>627.6</td>
<td>1.976</td>
<td>0.447</td>
<td>H-1\rightarrowL (0.733)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>$S_0 \rightarrow S_4$</td>
<td>640.2</td>
<td>1.342</td>
<td>0.358</td>
<td>H-1\rightarrowL (0.903)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>$S_0 \rightarrow S_3$</td>
<td>923.6</td>
<td>1.432</td>
<td>0.834</td>
<td>H-2\rightarrowL (0.404)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>$S_0 \rightarrow S_2$</td>
<td>1196.9</td>
<td>1.036</td>
<td>0.279</td>
<td>H-1\rightarrowL (0.901)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>$S_0 \rightarrow S_3$</td>
<td>811.4</td>
<td>1.657</td>
<td>0.126</td>
<td>H-3\rightarrowL (0.583)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>$S_0 \rightarrow S_5$</td>
<td>569.3</td>
<td>2.178</td>
<td>0.785</td>
<td>H-1\rightarrowL+1 (0.557)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>$S_0 \rightarrow S_7$</td>
<td>587.1</td>
<td>2.112</td>
<td>0.159</td>
<td>H-2\rightarrowL (0.404)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>$S_0 \rightarrow S_4$</td>
<td>733.7</td>
<td>1.690</td>
<td>0.122</td>
<td>H-1\rightarrowL (0.867)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>

Table S12: Excited state properties calculated with the mPWLYP functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation (coefficient)</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>$S_0 \rightarrow S_3$</td>
<td>772.9</td>
<td>1.604</td>
<td>0.292</td>
<td>H-1\rightarrowL (0.428)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>$S_0 \rightarrow S_3$</td>
<td>822.7</td>
<td>1.507</td>
<td>0.710</td>
<td>H-1\rightarrowL (0.844)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>$S_0 \rightarrow S_2$</td>
<td>1076.7</td>
<td>1.151</td>
<td>0.025</td>
<td>H-1\rightarrowL (0.938)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>$S_0 \rightarrow S_1$</td>
<td>1125.0</td>
<td>1.102</td>
<td>0.323</td>
<td>H-1\rightarrowL (0.865)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>$S_0 \rightarrow S_4$</td>
<td>690.3</td>
<td>1.796</td>
<td>0.095</td>
<td>H-3\rightarrowL (0.785)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>$S_0 \rightarrow S_2$</td>
<td>634.7</td>
<td>1.953</td>
<td>0.455</td>
<td>H-1\rightarrowL (0.758)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>$S_0 \rightarrow S_4$</td>
<td>941.1</td>
<td>1.317</td>
<td>0.351</td>
<td>H-1\rightarrowL (0.903)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>$S_0 \rightarrow S_3$</td>
<td>1218.0</td>
<td>1.018</td>
<td>0.269</td>
<td>H-1\rightarrowL (0.897)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>$S_0 \rightarrow S_2$</td>
<td>786.4</td>
<td>1.577</td>
<td>0.120</td>
<td>H-3\rightarrowL (0.590)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>$S_0 \rightarrow S_5$</td>
<td>571.5</td>
<td>2.169</td>
<td>0.769</td>
<td>H-1\rightarrowL+1 (0.547)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>$S_0 \rightarrow S_7$</td>
<td>593.2</td>
<td>2.090</td>
<td>0.182</td>
<td>H-2\rightarrowL (0.425)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>$S_0 \rightarrow S_4$</td>
<td>738.7</td>
<td>1.678</td>
<td>0.121</td>
<td>H-1\rightarrowL (0.870)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>

S9
Table S13: Excited state properties calculated with the B97-D3 functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation (coefficient)</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>$S_0 \rightarrow S_3$</td>
<td>770.4</td>
<td>1.609</td>
<td>0.288</td>
<td>H-1\rightarrowL (0.438)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>$S_0 \rightarrow S_3$</td>
<td>806.7</td>
<td>1.537</td>
<td>0.732</td>
<td>H-1\rightarrowL (0.845)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>$S_0 \rightarrow S_2$</td>
<td>1045.2</td>
<td>1.186</td>
<td>0.025</td>
<td>H-1\rightarrowL (0.934)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>$S_0 \rightarrow S_1$</td>
<td>1111.7</td>
<td>1.115</td>
<td>0.323</td>
<td>H-1\rightarrowL (0.870)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>$S_0 \rightarrow S_4$</td>
<td>680.8</td>
<td>1.821</td>
<td>0.099</td>
<td>H-3\rightarrowL (0.782)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>$S_0 \rightarrow S_2$</td>
<td>631.6</td>
<td>1.963</td>
<td>0.479</td>
<td>H-1\rightarrowL (0.812)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>$S_0 \rightarrow S_4$</td>
<td>627.5</td>
<td>1.976</td>
<td>0.883</td>
<td>H-1\rightarrowL (0.767)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>$S_0 \rightarrow S_3$</td>
<td>903.3</td>
<td>1.373</td>
<td>0.367</td>
<td>H-1\rightarrowL (0.904)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>$S_0 \rightarrow S_3$</td>
<td>1185.5</td>
<td>1.046</td>
<td>0.275</td>
<td>H-1\rightarrowL (0.896)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>$S_0 \rightarrow S_3$</td>
<td>773.2</td>
<td>1.603</td>
<td>0.113</td>
<td>H-3\rightarrowL (0.623)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>$S_0 \rightarrow S_5$</td>
<td>565.4</td>
<td>2.193</td>
<td>0.793</td>
<td>H-1\rightarrowL+1 (0.555)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>$S_0 \rightarrow S_7$</td>
<td>584.1</td>
<td>2.123</td>
<td>0.165</td>
<td>H-2\rightarrowL (0.404)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>$S_0 \rightarrow S_4$</td>
<td>715.1</td>
<td>1.734</td>
<td>0.133</td>
<td>H-1\rightarrowL (0.861)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>

Table S14: Excited state properties calculated with the M06-L functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation (coefficient)</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>$S_0 \rightarrow S_3$</td>
<td>691.8</td>
<td>1.792</td>
<td>0.338</td>
<td>H-1\rightarrowL (0.442)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>$S_0 \rightarrow S_2$</td>
<td>1185.5</td>
<td>1.046</td>
<td>0.332</td>
<td>H-1\rightarrowL (0.821)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>$S_0 \rightarrow S_5$</td>
<td>513.9</td>
<td>2.413</td>
<td>0.213</td>
<td>H-2\rightarrowL (0.425)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>$S_0 \rightarrow S_1$</td>
<td>968.3</td>
<td>1.280</td>
<td>0.381</td>
<td>H-1\rightarrowL (0.893)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>$S_0 \rightarrow S_4$</td>
<td>595.4</td>
<td>2.082</td>
<td>0.195</td>
<td>H-3\rightarrowL (0.690)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>$S_0 \rightarrow S_2$</td>
<td>594.5</td>
<td>2.086</td>
<td>0.545</td>
<td>H-1\rightarrowL (0.839)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>$S_0 \rightarrow S_4$</td>
<td>564.8</td>
<td>2.195</td>
<td>1.057</td>
<td>H-1\rightarrowL (0.823)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>$S_0 \rightarrow S_3$</td>
<td>773.9</td>
<td>1.602</td>
<td>0.431</td>
<td>H-1\rightarrowL (0.915)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>$S_0 \rightarrow S_4$</td>
<td>1027.4</td>
<td>1.207</td>
<td>0.309</td>
<td>H-1\rightarrowL (0.896)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>$S_0 \rightarrow S_3$</td>
<td>672.5</td>
<td>1.844</td>
<td>0.125</td>
<td>H-3\rightarrowL (0.712)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>$S_0 \rightarrow S_5$</td>
<td>533.7</td>
<td>2.323</td>
<td>0.857</td>
<td>H-1\rightarrowL+1 (0.620)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>$S_0 \rightarrow S_3$</td>
<td>1243.9</td>
<td>0.997</td>
<td>0.138</td>
<td>H-1\rightarrowL (0.849)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>$S_0 \rightarrow S_4$</td>
<td>601.6</td>
<td>2.061</td>
<td>0.179</td>
<td>H-1\rightarrowL (0.876)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>
Table S15: Excited state properties calculated with the TPSS functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation (coefficient)</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>$S_0 \rightarrow S_3$</td>
<td>728.7</td>
<td>1.701</td>
<td>0.322</td>
<td>H-1\rightarrowL (0.433)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>$S_0 \rightarrow S_3$</td>
<td>797.2</td>
<td>1.555</td>
<td>0.703</td>
<td>H\rightarrowL (0.861)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>$S_0 \rightarrow S_5$</td>
<td>544.9</td>
<td>2.275</td>
<td>0.161</td>
<td>H-2\rightarrowL (0.389)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>$S_0 \rightarrow S_1$</td>
<td>1064.0</td>
<td>1.165</td>
<td>0.345</td>
<td>H\rightarrowL (0.880)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>$S_0 \rightarrow S_3$</td>
<td>647.0</td>
<td>1.916</td>
<td>0.122</td>
<td>H-3\rightarrowL (0.758)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>$S_0 \rightarrow S_2$</td>
<td>615.0</td>
<td>2.016</td>
<td>0.504</td>
<td>H-1\rightarrowL (0.835)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>$S_0 \rightarrow S_4$</td>
<td>595.7</td>
<td>2.081</td>
<td>0.971</td>
<td>H-1\rightarrowL (0.794)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>$S_0 \rightarrow S_3$</td>
<td>843.2</td>
<td>1.470</td>
<td>0.402</td>
<td>H-1\rightarrowL (0.910)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>$S_0 \rightarrow S_2$</td>
<td>1118.3</td>
<td>1.109</td>
<td>0.297</td>
<td>H-1\rightarrowL (0.901)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>$S_0 \rightarrow S_3$</td>
<td>729.1</td>
<td>1.701</td>
<td>0.120</td>
<td>H-3\rightarrowL (0.642)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>$S_0 \rightarrow S_5$</td>
<td>553.3</td>
<td>2.241</td>
<td>0.821</td>
<td>H-1\rightarrowL+1 (0.590)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>$S_0 \rightarrow S_4$</td>
<td>631.4</td>
<td>1.964</td>
<td>0.024</td>
<td>H-1\rightarrowL+1 (0.847)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>$S_0 \rightarrow S_4$</td>
<td>657.7</td>
<td>1.885</td>
<td>0.150</td>
<td>H-1\rightarrowL (0.863)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>

Table S16: Excited state properties calculated with the O3LYP functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation (coefficient)</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>$S_0 \rightarrow S_1$</td>
<td>1376.7</td>
<td>0.901</td>
<td>0.311</td>
<td>H\rightarrowL (0.978)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>$S_0 \rightarrow S_2$</td>
<td>867.5</td>
<td>1.429</td>
<td>0.565</td>
<td>H-1\rightarrowL (0.942)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>$S_0 \rightarrow S_1$</td>
<td>1210.5</td>
<td>1.024</td>
<td>0.324</td>
<td>H\rightarrowL (0.989)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>$S_0 \rightarrow S_1$</td>
<td>771.9</td>
<td>1.606</td>
<td>0.616</td>
<td>H-1\rightarrowL (0.967)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>$S_0 \rightarrow S_4$</td>
<td>453.1</td>
<td>2.736</td>
<td>1.084</td>
<td>H-1\rightarrowL (0.704)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>$S_0 \rightarrow S_2$</td>
<td>570.6</td>
<td>2.173</td>
<td>0.516</td>
<td>H-1\rightarrowL (0.906)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>$S_0 \rightarrow S_3$</td>
<td>730.2</td>
<td>1.698</td>
<td>0.171</td>
<td>H-2\rightarrowL (0.751)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>$S_0 \rightarrow S_3$</td>
<td>635.9</td>
<td>1.950</td>
<td>0.531</td>
<td>H-1\rightarrowL (0.979)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>$S_0 \rightarrow S_2$</td>
<td>842.6</td>
<td>1.471</td>
<td>0.486</td>
<td>H-1\rightarrowL (0.943)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>$S_0 \rightarrow S_2$</td>
<td>1081.3</td>
<td>1.147</td>
<td>0.166</td>
<td>H-1\rightarrowL (0.575)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>$S_0 \rightarrow S_2$</td>
<td>1211.0</td>
<td>1.024</td>
<td>0.179</td>
<td>H-2\rightarrowL+1 (0.979)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>$S_0 \rightarrow S_3$</td>
<td>785.2</td>
<td>1.579</td>
<td>0.272</td>
<td>H-1\rightarrowL (0.952)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>$S_0 \rightarrow S_1$</td>
<td>1263.3</td>
<td>0.981</td>
<td>0.200</td>
<td>H\rightarrowL (0.986)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>
Table S17: Excited state properties calculated with the B3LYP functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>(\lambda_{\text{max}}) (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation (coefficient)</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>(S_0 \to S_1)</td>
<td>982.2</td>
<td>1.262</td>
<td>0.498</td>
<td>H(\to)L (0.993)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N2</td>
<td>(S_0 \to S_1)</td>
<td>1060.0</td>
<td>1.170</td>
<td>0.580</td>
<td>H(\to)L (0.987)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N3</td>
<td>(S_0 \to S_1)</td>
<td>901.8</td>
<td>1.375</td>
<td>0.457</td>
<td>H(\to)L (0.984)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N4</td>
<td>(S_0 \to S_1)</td>
<td>639.3</td>
<td>1.939</td>
<td>0.842</td>
<td>H(\to)L (0.986)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N5</td>
<td>(S_0 \to S_1)</td>
<td>1162.9</td>
<td>1.066</td>
<td>0.017</td>
<td>H(\to)L (0.984)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N6</td>
<td>(S_0 \to S_1)</td>
<td>794.3</td>
<td>1.561</td>
<td>0.304</td>
<td>H(\to)L (0.972)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N7</td>
<td>(S_0 \to S_1)</td>
<td>900.2</td>
<td>1.377</td>
<td>0.020</td>
<td>H(\to)L (0.928)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N8</td>
<td>(S_0 \to S_1)</td>
<td>959.3</td>
<td>1.292</td>
<td>0.269</td>
<td>H(\to)L (0.982)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N9</td>
<td>(S_0 \to S_1)</td>
<td>1471.4</td>
<td>0.843</td>
<td>0.112</td>
<td>H(\to)L (0.984)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N10</td>
<td>(S_0 \to S_1)</td>
<td>1472.8</td>
<td>0.837</td>
<td>0.110</td>
<td>H(\to)L (0.984)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N11</td>
<td>(S_0 \to S_1)</td>
<td>1193.1</td>
<td>1.039</td>
<td>0.048</td>
<td>H(\to)L (0.825)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N12</td>
<td>(S_0 \to S_1)</td>
<td>956.8</td>
<td>1.296</td>
<td>0.255</td>
<td>H(\to)L (0.987)</td>
<td>(\pi \to \pi^*)</td>
</tr>
</tbody>
</table>

Table S18: Excited state properties calculated with the B3P86 functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>(\lambda_{\text{max}}) (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation (coefficient)</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>(S_0 \to S_1)</td>
<td>974.1</td>
<td>1.273</td>
<td>0.501</td>
<td>H(\to)L (0.993)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N2</td>
<td>(S_0 \to S_1)</td>
<td>1056.8</td>
<td>1.173</td>
<td>0.572</td>
<td>H(\to)L (0.987)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N3</td>
<td>(S_0 \to S_1)</td>
<td>901.1</td>
<td>1.376</td>
<td>0.458</td>
<td>H(\to)L (0.985)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N4</td>
<td>(S_0 \to S_1)</td>
<td>637.5</td>
<td>1.945</td>
<td>0.859</td>
<td>H(\to)L (0.986)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N5</td>
<td>(S_0 \to S_1)</td>
<td>1153.1</td>
<td>1.075</td>
<td>0.017</td>
<td>H(\to)L (0.984)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N6</td>
<td>(S_0 \to S_1)</td>
<td>807.3</td>
<td>1.536</td>
<td>0.288</td>
<td>H(\to)L (0.974)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N7</td>
<td>(S_0 \to S_1)</td>
<td>898.3</td>
<td>1.380</td>
<td>0.019</td>
<td>H(\to)L (0.929)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N8</td>
<td>(S_0 \to S_1)</td>
<td>963.6</td>
<td>1.287</td>
<td>0.263</td>
<td>H(\to)L (0.983)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N9</td>
<td>(S_0 \to S_1)</td>
<td>1480.6</td>
<td>0.837</td>
<td>0.110</td>
<td>H(\to)L (0.984)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N10</td>
<td>(S_0 \to S_1)</td>
<td>843.3</td>
<td>1.470</td>
<td>0.370</td>
<td>H(\to)L (0.964)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N11</td>
<td>(S_0 \to S_1)</td>
<td>1472.8</td>
<td>0.842</td>
<td>0.258</td>
<td>H(\to)L (0.990)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N12</td>
<td>(S_0 \to S_1)</td>
<td>1162.8</td>
<td>1.066</td>
<td>0.050</td>
<td>H(\to)L (0.804)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N13</td>
<td>(S_0 \to S_1)</td>
<td>961.9</td>
<td>1.289</td>
<td>0.260</td>
<td>H(\to)L (0.987)</td>
<td>(\pi \to \pi^*)</td>
</tr>
</tbody>
</table>
Table S19: Excited state properties calculated with the X3LYP functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>(\lambda_{\text{max}}) (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>(S_0 \rightarrow S_1)</td>
<td>921.3</td>
<td>1.346</td>
<td>0.549</td>
<td>H(\rightarrow)L (0.993)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N2</td>
<td>(S_0 \rightarrow S_1)</td>
<td>959.9</td>
<td>1.292</td>
<td>0.706</td>
<td>H(\rightarrow)L (0.977)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N3</td>
<td>(S_0 \rightarrow S_1)</td>
<td>854.0</td>
<td>1.452</td>
<td>0.491</td>
<td>H(\rightarrow)L (0.981)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N4</td>
<td>(S_0 \rightarrow S_1)</td>
<td>616.9</td>
<td>2.010</td>
<td>0.897</td>
<td>H(\rightarrow)L (0.984)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N5</td>
<td>(S_0 \rightarrow S_1)</td>
<td>1087.3</td>
<td>1.140</td>
<td>0.018</td>
<td>H(\rightarrow)L (0.980)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N6</td>
<td>(S_0 \rightarrow S_1)</td>
<td>1297.6</td>
<td>1.289</td>
<td>0.138</td>
<td>H(\rightarrow)L (0.980)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N7</td>
<td>(S_0 \rightarrow S_1)</td>
<td>1008.5</td>
<td>1.511</td>
<td>0.652</td>
<td>H(\rightarrow)L (0.994)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N8</td>
<td>(S_0 \rightarrow S_1)</td>
<td>884.8</td>
<td>1.401</td>
<td>0.311</td>
<td>H(\rightarrow)L (0.973)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N9</td>
<td>(S_0 \rightarrow S_1)</td>
<td>750.6</td>
<td>1.652</td>
<td>0.387</td>
<td>H(\rightarrow)L (0.954)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N10</td>
<td>(S_0 \rightarrow S_1)</td>
<td>867.6</td>
<td>1.429</td>
<td>0.068</td>
<td>H(\rightarrow)L (0.633)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N11</td>
<td>(S_0 \rightarrow S_1)</td>
<td>840.6</td>
<td>1.475</td>
<td>0.307</td>
<td>H(\rightarrow)L (0.982)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
</tbody>
</table>

Table S20: Excited state properties calculated with the PBE0 functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>(\lambda_{\text{max}}) (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>(S_0 \rightarrow S_1)</td>
<td>820.5</td>
<td>1.511</td>
<td>0.652</td>
<td>H(\rightarrow)L (0.989)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N2</td>
<td>(S_0 \rightarrow S_1)</td>
<td>814.9</td>
<td>1.521</td>
<td>0.958</td>
<td>H(\rightarrow)L (0.946)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N3</td>
<td>(S_0 \rightarrow S_1)</td>
<td>778.5</td>
<td>1.593</td>
<td>0.555</td>
<td>H(\rightarrow)L (0.974)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N4</td>
<td>(S_0 \rightarrow S_1)</td>
<td>580.5</td>
<td>2.136</td>
<td>1.017</td>
<td>H(\rightarrow)L (0.975)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N5</td>
<td>(S_0 \rightarrow S_1)</td>
<td>962.1</td>
<td>1.289</td>
<td>0.023</td>
<td>H(\rightarrow)L (0.973)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N6</td>
<td>(S_0 \rightarrow S_1)</td>
<td>625.9</td>
<td>1.981</td>
<td>0.539</td>
<td>H(\rightarrow)L (0.979)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N7</td>
<td>(S_0 \rightarrow S_1)</td>
<td>750.6</td>
<td>1.652</td>
<td>0.010</td>
<td>H(\rightarrow)L (0.893)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N8</td>
<td>(S_0 \rightarrow S_1)</td>
<td>777.8</td>
<td>1.594</td>
<td>0.387</td>
<td>H(\rightarrow)L (0.954)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N9</td>
<td>(S_0 \rightarrow S_1)</td>
<td>1068.5</td>
<td>1.160</td>
<td>0.189</td>
<td>H(\rightarrow)L (0.968)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N10</td>
<td>(S_0 \rightarrow S_1)</td>
<td>742.2</td>
<td>1.670</td>
<td>0.452</td>
<td>H(\rightarrow)L (0.958)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N11</td>
<td>(S_0 \rightarrow S_1)</td>
<td>1049.2</td>
<td>1.182</td>
<td>0.434</td>
<td>H(\rightarrow)L (0.963)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N12</td>
<td>(S_0 \rightarrow S_1)</td>
<td>867.6</td>
<td>1.429</td>
<td>0.068</td>
<td>H(\rightarrow)L (0.633)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
<tr>
<td>N13</td>
<td>(S_0 \rightarrow S_1)</td>
<td>840.6</td>
<td>1.475</td>
<td>0.307</td>
<td>H(\rightarrow)L (0.982)</td>
<td>(\pi \rightarrow \pi^*)</td>
</tr>
</tbody>
</table>
Table S21: Excited state properties calculated with the mPW1PW functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>(\lambda_{\text{max}}) (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>(S_0 \rightarrow S_1)</td>
<td>819.1</td>
<td>1.514</td>
<td>0.655</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>(S_0 \rightarrow S_1)</td>
<td>814.1</td>
<td>1.523</td>
<td>0.966</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N3</td>
<td>(S_0 \rightarrow S_1)</td>
<td>776.6</td>
<td>1.596</td>
<td>0.556</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N4</td>
<td>(S_0 \rightarrow S_1)</td>
<td>580.4</td>
<td>2.136</td>
<td>1.011</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N5</td>
<td>(S_0 \rightarrow S_1)</td>
<td>961.1</td>
<td>1.290</td>
<td>0.023</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N6</td>
<td>(S_0 \rightarrow S_1)</td>
<td>621.3</td>
<td>1.996</td>
<td>0.551</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N7</td>
<td>(S_0 \rightarrow S_1)</td>
<td>750.1</td>
<td>1.653</td>
<td>0.011</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N8</td>
<td>(S_0 \rightarrow S_1)</td>
<td>774.4</td>
<td>1.601</td>
<td>0.392</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N9</td>
<td>(S_0 \rightarrow S_1)</td>
<td>1057.9</td>
<td>1.172</td>
<td>0.194</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N10</td>
<td>(S_0 \rightarrow S_1)</td>
<td>741.1</td>
<td>1.673</td>
<td>0.453</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N11</td>
<td>(S_0 \rightarrow S_1)</td>
<td>1044.3</td>
<td>1.187</td>
<td>0.436</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N12</td>
<td>(S_0 \rightarrow S_1)</td>
<td>863.7</td>
<td>1.436</td>
<td>0.069</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N13</td>
<td>(S_0 \rightarrow S_1)</td>
<td>837.3</td>
<td>1.481</td>
<td>0.307</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
</tbody>
</table>

Table S22: Excited state properties calculated with the mPW1LYP functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>(\lambda_{\text{max}}) (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>(S_0 \rightarrow S_1)</td>
<td>826.8</td>
<td>1.499</td>
<td>0.653</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>(S_0 \rightarrow S_1)</td>
<td>822.0</td>
<td>1.508</td>
<td>0.976</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N3</td>
<td>(S_0 \rightarrow S_1)</td>
<td>777.0</td>
<td>1.596</td>
<td>0.558</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N4</td>
<td>(S_0 \rightarrow S_1)</td>
<td>581.4</td>
<td>2.133</td>
<td>0.993</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N5</td>
<td>(S_0 \rightarrow S_1)</td>
<td>972.5</td>
<td>1.275</td>
<td>0.022</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N6</td>
<td>(S_0 \rightarrow S_1)</td>
<td>614.3</td>
<td>2.018</td>
<td>0.581</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N7</td>
<td>(S_0 \rightarrow S_1)</td>
<td>747.9</td>
<td>1.658</td>
<td>0.017</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N8</td>
<td>(S_0 \rightarrow S_1)</td>
<td>772.8</td>
<td>1.604</td>
<td>0.403</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N9</td>
<td>(S_0 \rightarrow S_1)</td>
<td>1047.0</td>
<td>1.184</td>
<td>0.205</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N10</td>
<td>(S_0 \rightarrow S_1)</td>
<td>744.6</td>
<td>1.665</td>
<td>0.450</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N11</td>
<td>(S_0 \rightarrow S_1)</td>
<td>1045.7</td>
<td>1.186</td>
<td>0.436</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N12</td>
<td>(S_0 \rightarrow S_1)</td>
<td>868.7</td>
<td>1.427</td>
<td>0.070</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N13</td>
<td>(S_0 \rightarrow S_1)</td>
<td>833.6</td>
<td>1.487</td>
<td>0.300</td>
<td>(\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
</tbody>
</table>
Table S23: Excited state properties calculated with the BH&HLYP functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>$S_0 \rightarrow S_1$</td>
<td>499.2</td>
<td>2.483</td>
<td>1.569</td>
<td>H\rightarrowL (0.758)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>$S_0 \rightarrow S_1$</td>
<td>500.9</td>
<td>2.475</td>
<td>2.618</td>
<td>H\rightarrowL (0.572)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>$S_0 \rightarrow S_1$</td>
<td>478.0</td>
<td>2.594</td>
<td>1.256</td>
<td>H\rightarrowL (0.784)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>$S_0 \rightarrow S_1$</td>
<td>435.6</td>
<td>2.846</td>
<td>1.568</td>
<td>H\rightarrowL (0.773)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>$S_0 \rightarrow S_1$</td>
<td>529.9</td>
<td>2.340</td>
<td>0.129</td>
<td>H\rightarrowL (0.841)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>$S_0 \rightarrow S_1$</td>
<td>466.2</td>
<td>2.659</td>
<td>1.037</td>
<td>H\rightarrowL (0.861)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>$S_0 \rightarrow S_1$</td>
<td>427.0</td>
<td>2.903</td>
<td>1.816</td>
<td>H\rightarrowL (0.901)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>$S_0 \rightarrow S_1$</td>
<td>466.7</td>
<td>2.656</td>
<td>1.135</td>
<td>H\rightarrowL (0.565)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>$S_0 \rightarrow S_1$</td>
<td>478.8</td>
<td>2.590</td>
<td>1.257</td>
<td>H\rightarrowL (0.517)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>$S_0 \rightarrow S_1$</td>
<td>473.5</td>
<td>2.619</td>
<td>1.035</td>
<td>H\rightarrowL (0.843)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>$S_0 \rightarrow S_1$</td>
<td>493.4</td>
<td>2.513</td>
<td>1.822</td>
<td>H\rightarrowL (0.422)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>$S_0 \rightarrow S_1$</td>
<td>441.6</td>
<td>2.807</td>
<td>0.208</td>
<td>H\rightarrowL+1 (0.313)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>$S_0 \rightarrow S_1$</td>
<td>489.5</td>
<td>2.533</td>
<td>0.741</td>
<td>H\rightarrowL (0.877)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>

Table S24: Excited state properties calculated with the TPSSh functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>$S_0 \rightarrow S_2$</td>
<td>563.2</td>
<td>2.202</td>
<td>0.637</td>
<td>H\rightarrowL (0.788)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>$S_0 \rightarrow S_2$</td>
<td>864.5</td>
<td>1.434</td>
<td>0.588</td>
<td>H\rightarrowL (0.933)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>$S_0 \rightarrow S_2$</td>
<td>494.6</td>
<td>2.507</td>
<td>0.266</td>
<td>H\rightarrowL (0.759)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>$S_0 \rightarrow S_1$</td>
<td>782.3</td>
<td>1.585</td>
<td>0.577</td>
<td>H\rightarrowL (0.964)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>$S_0 \rightarrow S_2$</td>
<td>453.2</td>
<td>2.736</td>
<td>1.026</td>
<td>H\rightarrowL (0.686)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>$S_0 \rightarrow S_2$</td>
<td>563.4</td>
<td>2.201</td>
<td>0.534</td>
<td>H\rightarrowL (0.899)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>$S_0 \rightarrow S_2$</td>
<td>518.3</td>
<td>2.392</td>
<td>1.234</td>
<td>H\rightarrowL (0.828)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>$S_0 \rightarrow S_3$</td>
<td>623.0</td>
<td>1.990</td>
<td>0.554</td>
<td>H\rightarrowL (0.977)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>$S_0 \rightarrow S_2$</td>
<td>831.7</td>
<td>1.491</td>
<td>0.497</td>
<td>H\rightarrowL (0.936)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>$S_0 \rightarrow S_2$</td>
<td>1042.4</td>
<td>1.189</td>
<td>0.259</td>
<td>H\rightarrowL (0.655)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>$S_0 \rightarrow S_2$</td>
<td>1206.2</td>
<td>1.028</td>
<td>0.177</td>
<td>H\rightarrowL (0.978)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>$S_0 \rightarrow S_3$</td>
<td>790.5</td>
<td>1.568</td>
<td>0.268</td>
<td>H\rightarrowL+1 (0.948)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>$S_0 \rightarrow S_1$</td>
<td>1204.8</td>
<td>1.029</td>
<td>0.201</td>
<td>H\rightarrowL (0.986)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>
Table S25: Excited state properties calculated with the TPSS0 functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation (coefficient)</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>$S_0 \rightarrow S_1$</td>
<td>789.4</td>
<td>1.571</td>
<td>0.697</td>
<td>H\rightarrowL (0.988)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>$S_0 \rightarrow S_1$</td>
<td>784.0</td>
<td>1.581</td>
<td>1.039</td>
<td>H\rightarrowL (0.940)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>$S_0 \rightarrow S_1$</td>
<td>750.9</td>
<td>1.651</td>
<td>0.582</td>
<td>H\rightarrowL (0.973)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>$S_0 \rightarrow S_1$</td>
<td>567.8</td>
<td>2.183</td>
<td>1.023</td>
<td>H\rightarrowL (0.972)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>$S_0 \rightarrow S_3$</td>
<td>409.1</td>
<td>3.031</td>
<td>1.526</td>
<td>H-1\rightarrowL (0.960)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>$S_0 \rightarrow S_1$</td>
<td>592.7</td>
<td>2.092</td>
<td>0.612</td>
<td>H\rightarrowL (0.974)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>$S_0 \rightarrow S_2$</td>
<td>468.0</td>
<td>2.649</td>
<td>1.605</td>
<td>H-1\rightarrowL (0.962)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>$S_0 \rightarrow S_1$</td>
<td>745.6</td>
<td>1.663</td>
<td>0.415</td>
<td>H\rightarrowL (0.949)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>$S_0 \rightarrow S_1$</td>
<td>987.2</td>
<td>1.256</td>
<td>0.220</td>
<td>H\rightarrowL (0.966)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>$S_0 \rightarrow S_1$</td>
<td>709.4</td>
<td>1.748</td>
<td>0.491</td>
<td>H\rightarrowL (0.952)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>$S_0 \rightarrow S_1$</td>
<td>983.3</td>
<td>1.261</td>
<td>0.476</td>
<td>H\rightarrowL (0.959)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>$S_0 \rightarrow S_1$</td>
<td>820.3</td>
<td>1.512</td>
<td>0.074</td>
<td>H\rightarrowL (0.635)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>$S_0 \rightarrow S_1$</td>
<td>789.4</td>
<td>1.571</td>
<td>0.324</td>
<td>H\rightarrowL (0.982)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>

Table S26: Excited state properties calculated with the M06 functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation (coefficient)</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>$S_0 \rightarrow S_1$</td>
<td>738.9</td>
<td>1.678</td>
<td>0.761</td>
<td>H\rightarrowL (0.974)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>$S_0 \rightarrow S_1$</td>
<td>716.9</td>
<td>1.729</td>
<td>1.270</td>
<td>H\rightarrowL (0.884)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>$S_0 \rightarrow S_1$</td>
<td>713.8</td>
<td>1.737</td>
<td>0.610</td>
<td>H\rightarrowL (0.959)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>$S_0 \rightarrow S_1$</td>
<td>555.4</td>
<td>2.233</td>
<td>1.102</td>
<td>H\rightarrowL (0.954)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>$S_0 \rightarrow S_2$</td>
<td>423.6</td>
<td>2.927</td>
<td>1.294</td>
<td>H-1\rightarrowL (0.829)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>$S_0 \rightarrow S_1$</td>
<td>651.5</td>
<td>2.208</td>
<td>0.746</td>
<td>H\rightarrowL (0.939)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>$S_0 \rightarrow S_1$</td>
<td>478.4</td>
<td>2.592</td>
<td>1.541</td>
<td>H-1\rightarrowL (0.934)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>$S_0 \rightarrow S_1$</td>
<td>682.1</td>
<td>1.818</td>
<td>0.519</td>
<td>H\rightarrowL (0.904)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>$S_0 \rightarrow S_1$</td>
<td>850.2</td>
<td>1.458</td>
<td>0.319</td>
<td>H\rightarrowL (0.935)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>$S_0 \rightarrow S_1$</td>
<td>707.2</td>
<td>1.753</td>
<td>0.462</td>
<td>H\rightarrowL (0.958)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>$S_0 \rightarrow S_1$</td>
<td>854.0</td>
<td>1.452</td>
<td>0.631</td>
<td>H\rightarrowL (0.917)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>$S_0 \rightarrow S_1$</td>
<td>747.4</td>
<td>1.659</td>
<td>0.075</td>
<td>H\rightarrowL (0.502)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>$S_0 \rightarrow S_1$</td>
<td>820.8</td>
<td>1.510</td>
<td>0.338</td>
<td>H\rightarrowL (0.978)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>
Table S27: Excited state properties calculated with the M06-2X functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>$S_0 \rightarrow S_1$</td>
<td>497.3</td>
<td>2.493</td>
<td>1.528</td>
<td>H\rightarrowL (0.739)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>$S_0 \rightarrow S_1$</td>
<td>490.7</td>
<td>2.526</td>
<td>2.548</td>
<td>H\rightarrowL (0.517)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>$S_0 \rightarrow S_1$</td>
<td>487.7</td>
<td>2.542</td>
<td>1.192</td>
<td>H\rightarrowL (0.776)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>$S_0 \rightarrow S_1$</td>
<td>454.6</td>
<td>2.727</td>
<td>1.517</td>
<td>H\rightarrowL (0.792)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>$S_0 \rightarrow S_1$</td>
<td>527.0</td>
<td>2.353</td>
<td>0.137</td>
<td>H\rightarrowL (0.812)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>$S_0 \rightarrow S_1$</td>
<td>469.5</td>
<td>2.641</td>
<td>1.002</td>
<td>H\rightarrowL (0.790)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>$S_0 \rightarrow S_1$</td>
<td>426.3</td>
<td>2.908</td>
<td>1.773</td>
<td>H-1\rightarrowL (0.908)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>$S_0 \rightarrow S_1$</td>
<td>455.5</td>
<td>2.722</td>
<td>1.197</td>
<td>H\rightarrowL (0.515)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>$S_0 \rightarrow S_1$</td>
<td>477.4</td>
<td>2.597</td>
<td>1.217</td>
<td>H\rightarrowL (0.469)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>$S_0 \rightarrow S_1$</td>
<td>486.1</td>
<td>2.551</td>
<td>0.965</td>
<td>H\rightarrowL (0.840)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>$S_0 \rightarrow S_1$</td>
<td>501.0</td>
<td>2.475</td>
<td>1.617</td>
<td>H-1\rightarrowL (0.465)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>$S_0 \rightarrow S_1$</td>
<td>452.4</td>
<td>2.741</td>
<td>0.153</td>
<td>H-1\rightarrowL+1 (0.314)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>$S_0 \rightarrow S_1$</td>
<td>508.5</td>
<td>2.438</td>
<td>0.669</td>
<td>H\rightarrowL (0.867)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>

Table S28: Excited state properties calculated with the LC-BLYP functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>$S_0 \rightarrow S_1$</td>
<td>434.6</td>
<td>2.853</td>
<td>1.762</td>
<td>H\rightarrowL (0.456)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>$S_0 \rightarrow S_1$</td>
<td>439.4</td>
<td>2.822</td>
<td>2.699</td>
<td>H\rightarrowL (0.305)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>$S_0 \rightarrow S_1$</td>
<td>419.3</td>
<td>2.957</td>
<td>1.481</td>
<td>H\rightarrowL (0.494)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>$S_0 \rightarrow S_1$</td>
<td>417.3</td>
<td>2.971</td>
<td>1.635</td>
<td>H\rightarrowL (0.626)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>$S_0 \rightarrow S_1$</td>
<td>398.0</td>
<td>3.115</td>
<td>0.885</td>
<td>H-1\rightarrowL (0.400)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>$S_0 \rightarrow S_1$</td>
<td>438.7</td>
<td>2.826</td>
<td>1.063</td>
<td>H\rightarrowL (0.764)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>$S_0 \rightarrow S_1$</td>
<td>402.7</td>
<td>3.079</td>
<td>1.796</td>
<td>H-1\rightarrowL (0.774)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>$S_0 \rightarrow S_1$</td>
<td>404.6</td>
<td>3.064</td>
<td>1.349</td>
<td>H-1\rightarrowL (0.441)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>$S_0 \rightarrow S_1$</td>
<td>423.5</td>
<td>2.928</td>
<td>1.357</td>
<td>H-1\rightarrowL (0.399)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>$S_0 \rightarrow S_1$</td>
<td>413.0</td>
<td>3.002</td>
<td>1.302</td>
<td>H\rightarrowL (0.625)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>$S_0 \rightarrow S_1$</td>
<td>460.4</td>
<td>2.693</td>
<td>1.435</td>
<td>H\rightarrowL (0.542)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>$S_0 \rightarrow S_1$</td>
<td>417.3</td>
<td>2.971</td>
<td>0.140</td>
<td>H-1\rightarrowL+1 (0.422)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>$S_0 \rightarrow S_1$</td>
<td>394.8</td>
<td>3.140</td>
<td>1.098</td>
<td>H\rightarrowL (0.561)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>
Table S29: Excited state properties calculated with the CAM-B3LYP functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>(\lambda_{\text{max}}) (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation (coefficient)</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>(S_0 \rightarrow S_1)</td>
<td>484.6</td>
<td>2.559</td>
<td>1.621</td>
<td>H(\rightarrow)L (0.667) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>(S_0 \rightarrow S_1)</td>
<td>483.2</td>
<td>2.566</td>
<td>2.655</td>
<td>H(\rightarrow)L (0.451) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N3</td>
<td>(S_0 \rightarrow S_1)</td>
<td>470.9</td>
<td>2.633</td>
<td>1.268</td>
<td>H(\rightarrow)L (0.708) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N4</td>
<td>(S_0 \rightarrow S_1)</td>
<td>445.0</td>
<td>2.786</td>
<td>1.551</td>
<td>H(\rightarrow)L (0.745) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N5</td>
<td>(S_0 \rightarrow S_1)</td>
<td>501.8</td>
<td>2.471</td>
<td>0.182</td>
<td>H(\rightarrow)L (0.746) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N6</td>
<td>(S_0 \rightarrow S_1)</td>
<td>467.2</td>
<td>2.654</td>
<td>1.011</td>
<td>H(\rightarrow)L (0.788) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N7</td>
<td>(S_0 \rightarrow S_1)</td>
<td>426.1</td>
<td>2.910</td>
<td>1.786</td>
<td>H-1(\rightarrow)L (0.886) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N8</td>
<td>(S_0 \rightarrow S_1)</td>
<td>453.0</td>
<td>2.737</td>
<td>1.172</td>
<td>H(\rightarrow)L (0.437) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N9</td>
<td>(S_0 \rightarrow S_1)</td>
<td>466.6</td>
<td>2.657</td>
<td>1.288</td>
<td>H-1(\rightarrow)L (0.401) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N10</td>
<td>(S_0 \rightarrow S_1)</td>
<td>467.6</td>
<td>2.651</td>
<td>1.056</td>
<td>H(\rightarrow)L (0.798) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N11</td>
<td>(S_0 \rightarrow S_1)</td>
<td>489.1</td>
<td>2.535</td>
<td>1.654</td>
<td>H-1(\rightarrow)L (0.497) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N12</td>
<td>(S_0 \rightarrow S_1)</td>
<td>444.6</td>
<td>2.789</td>
<td>0.148</td>
<td>H-1(\rightarrow)L+1 (0.390) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N13</td>
<td>(S_0 \rightarrow S_1)</td>
<td>479.2</td>
<td>2.587</td>
<td>0.783</td>
<td>H(\rightarrow)L (0.818) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
</tbody>
</table>

Table S30: Excited state properties calculated with the \(\omega\)B97 functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>(\lambda_{\text{max}}) (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation (coefficient)</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>(S_0 \rightarrow S_1)</td>
<td>418.7</td>
<td>2.961</td>
<td>1.796</td>
<td>H(\rightarrow)L (0.437) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>(S_0 \rightarrow S_1)</td>
<td>425.4</td>
<td>2.914</td>
<td>2.741</td>
<td>H(\rightarrow)L (0.307) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N3</td>
<td>(S_0 \rightarrow S_1)</td>
<td>401.3</td>
<td>3.089</td>
<td>1.567</td>
<td>H(\rightarrow)L (0.460) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N4</td>
<td>(S_0 \rightarrow S_1)</td>
<td>392.1</td>
<td>3.162</td>
<td>1.735</td>
<td>H(\rightarrow)L (0.588) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N5</td>
<td>(S_0 \rightarrow S_1)</td>
<td>376.4</td>
<td>3.294</td>
<td>1.252</td>
<td>H-1(\rightarrow)L (0.604) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N6</td>
<td>(S_0 \rightarrow S_1)</td>
<td>422.3</td>
<td>2.936</td>
<td>1.111</td>
<td>H(\rightarrow)L (0.798) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N7</td>
<td>(S_0 \rightarrow S_1)</td>
<td>389.9</td>
<td>3.180</td>
<td>1.820</td>
<td>H-1(\rightarrow)L (0.725) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N8</td>
<td>(S_0 \rightarrow S_1)</td>
<td>388.6</td>
<td>3.191</td>
<td>1.414</td>
<td>H-1(\rightarrow)L (0.455) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N9</td>
<td>(S_0 \rightarrow S_1)</td>
<td>408.6</td>
<td>3.034</td>
<td>1.378</td>
<td>H-1(\rightarrow)L (0.366) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N10</td>
<td>(S_0 \rightarrow S_1)</td>
<td>393.8</td>
<td>3.148</td>
<td>1.409</td>
<td>H(\rightarrow)L (0.593) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N11</td>
<td>(S_0 \rightarrow S_1)</td>
<td>443.9</td>
<td>2.793</td>
<td>1.507</td>
<td>H-1(\rightarrow)L (0.529) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N12</td>
<td>(S_0 \rightarrow S_1)</td>
<td>394.1</td>
<td>3.146</td>
<td>0.208</td>
<td>H-1(\rightarrow)L+1 (0.313) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
<tr>
<td>N13</td>
<td>(S_0 \rightarrow S_1)</td>
<td>366.9</td>
<td>3.379</td>
<td>1.341</td>
<td>H(\rightarrow)L (0.519) (\pi \rightarrow \pi^*)</td>
<td></td>
</tr>
</tbody>
</table>
Table S31: Excited state properties calculated with the ωB97X functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>$S_0 \rightarrow S_1$</td>
<td>429.1</td>
<td>2.889</td>
<td>1.792</td>
<td>H\rightarrowL (0.465)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>$S_0 \rightarrow S_1$</td>
<td>436.2</td>
<td>2.842</td>
<td>2.758</td>
<td>H\rightarrowL (0.324)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>$S_0 \rightarrow S_1$</td>
<td>412.3</td>
<td>3.007</td>
<td>1.526</td>
<td>H\rightarrowL (0.493)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>$S_0 \rightarrow S_1$</td>
<td>404.6</td>
<td>3.065</td>
<td>1.690</td>
<td>H\rightarrowL (0.612)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>$S_0 \rightarrow S_1$</td>
<td>388.7</td>
<td>3.189</td>
<td>1.056</td>
<td>H-1\rightarrowL (0.489)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>$S_0 \rightarrow S_1$</td>
<td>432.9</td>
<td>2.864</td>
<td>1.083</td>
<td>H\rightarrowL (0.793)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>$S_0 \rightarrow S_1$</td>
<td>398.4</td>
<td>3.112</td>
<td>1.825</td>
<td>H-1\rightarrowL (0.749)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>$S_0 \rightarrow S_1$</td>
<td>401.2</td>
<td>3.090</td>
<td>1.356</td>
<td>H-1\rightarrowL (0.441)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>$S_0 \rightarrow S_1$</td>
<td>419.6</td>
<td>2.955</td>
<td>1.357</td>
<td>H-1\rightarrowL (0.377)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>$S_0 \rightarrow S_1$</td>
<td>404.7</td>
<td>3.064</td>
<td>1.356</td>
<td>H\rightarrowL (0.625)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>$S_0 \rightarrow S_1$</td>
<td>453.0</td>
<td>2.737</td>
<td>1.520</td>
<td>H-1\rightarrowL (0.530)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>$S_0 \rightarrow S_1$</td>
<td>405.4</td>
<td>3.058</td>
<td>0.174</td>
<td>H-1\rightarrowL+1 (0.378)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>$S_0 \rightarrow S_1$</td>
<td>384.1</td>
<td>3.228</td>
<td>1.211</td>
<td>H\rightarrowL (0.566)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>

Table S32: Excited state properties calculated with the ωB97X-D3 functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>$S_0 \rightarrow S_1$</td>
<td>438.4</td>
<td>2.828</td>
<td>1.790</td>
<td>H\rightarrowL (0.493)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>$S_0 \rightarrow S_1$</td>
<td>445.6</td>
<td>2.782</td>
<td>2.776</td>
<td>H\rightarrowL (0.339)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>$S_0 \rightarrow S_1$</td>
<td>423.0</td>
<td>2.931</td>
<td>1.480</td>
<td>H\rightarrowL (0.526)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>$S_0 \rightarrow S_1$</td>
<td>415.2</td>
<td>2.986</td>
<td>1.655</td>
<td>H\rightarrowL (0.635)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>$S_0 \rightarrow S_1$</td>
<td>404.6</td>
<td>3.064</td>
<td>0.806</td>
<td>H\rightarrowL (0.412)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>$S_0 \rightarrow S_1$</td>
<td>441.8</td>
<td>2.806</td>
<td>1.058</td>
<td>H\rightarrowL (0.781)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>$S_0 \rightarrow S_1$</td>
<td>405.5</td>
<td>3.058</td>
<td>1.305</td>
<td>H-1\rightarrowL (0.432)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>$S_0 \rightarrow S_1$</td>
<td>429.7</td>
<td>2.885</td>
<td>1.340</td>
<td>H-1\rightarrowL (0.396)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>$S_0 \rightarrow S_1$</td>
<td>415.6</td>
<td>2.983</td>
<td>1.302</td>
<td>H\rightarrowL (0.656)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>$S_0 \rightarrow S_1$</td>
<td>461.3</td>
<td>2.688</td>
<td>1.532</td>
<td>H-1\rightarrowL (0.534)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>$S_0 \rightarrow S_1$</td>
<td>415.5</td>
<td>2.984</td>
<td>0.155</td>
<td>H-1\rightarrowL+1 (0.413)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>$S_0 \rightarrow S_1$</td>
<td>401.8</td>
<td>3.086</td>
<td>1.107</td>
<td>H\rightarrowL (0.613)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>
Table S33: Excited state properties calculated with the ωB97X-D3(BJ) functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>S_0 → S_1</td>
<td>426.4</td>
<td>2.908</td>
<td>1.803</td>
<td>H→L (0.470)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N2</td>
<td>S_0 → S_1</td>
<td>433.5</td>
<td>2.860</td>
<td>2.782</td>
<td>H→L (0.332)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N3</td>
<td>S_0 → S_1</td>
<td>408.8</td>
<td>3.033</td>
<td>1.542</td>
<td>H→L (0.497)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N4</td>
<td>S_0 → S_1</td>
<td>400.8</td>
<td>3.093</td>
<td>1.699</td>
<td>H→L (0.615)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N5</td>
<td>S_0 → S_1</td>
<td>385.4</td>
<td>3.217</td>
<td>1.076</td>
<td>H-1→L (0.494)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N6</td>
<td>S_0 → S_1</td>
<td>395.7</td>
<td>3.133</td>
<td>1.837</td>
<td>H-1→L (0.693)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N7</td>
<td>S_0 → S_1</td>
<td>398.9</td>
<td>3.108</td>
<td>1.360</td>
<td>H-1→L (0.434)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N8</td>
<td>S_0 → S_1</td>
<td>416.6</td>
<td>2.976</td>
<td>1.362</td>
<td>H-1→L (0.370)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N9</td>
<td>S_0 → S_1</td>
<td>401.6</td>
<td>3.087</td>
<td>1.370</td>
<td>H-1→L (0.630)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N10</td>
<td>S_0 → S_1</td>
<td>449.0</td>
<td>2.761</td>
<td>1.545</td>
<td>H-1→L (0.524)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N11</td>
<td>S_0 → S_1</td>
<td>401.5</td>
<td>3.088</td>
<td>0.178</td>
<td>H-1→L+1 (0.381)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N12</td>
<td>S_0 → S_1</td>
<td>381.2</td>
<td>3.253</td>
<td>1.226</td>
<td>H→L (0.573)</td>
<td>π → π*</td>
</tr>
</tbody>
</table>

Table S34: Excited state properties calculated with the ωB97X-V functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>S_0 → S_1</td>
<td>426.3</td>
<td>2.908</td>
<td>1.803</td>
<td>H→L (0.470)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N2</td>
<td>S_0 → S_1</td>
<td>433.5</td>
<td>2.860</td>
<td>2.782</td>
<td>H→L (0.332)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N3</td>
<td>S_0 → S_1</td>
<td>408.8</td>
<td>3.033</td>
<td>1.542</td>
<td>H→L (0.497)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N4</td>
<td>S_0 → S_1</td>
<td>400.8</td>
<td>3.093</td>
<td>1.699</td>
<td>H→L (0.615)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N5</td>
<td>S_0 → S_1</td>
<td>385.4</td>
<td>3.217</td>
<td>1.076</td>
<td>H-1→L (0.494)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N6</td>
<td>S_0 → S_1</td>
<td>395.7</td>
<td>3.133</td>
<td>1.837</td>
<td>H-1→L (0.693)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N7</td>
<td>S_0 → S_1</td>
<td>398.9</td>
<td>3.108</td>
<td>1.360</td>
<td>H-1→L (0.434)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N8</td>
<td>S_0 → S_1</td>
<td>416.6</td>
<td>2.976</td>
<td>1.362</td>
<td>H→L (0.573)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N9</td>
<td>S_0 → S_1</td>
<td>401.6</td>
<td>3.087</td>
<td>1.370</td>
<td>H→L (0.630)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N10</td>
<td>S_0 → S_1</td>
<td>449.0</td>
<td>2.761</td>
<td>1.545</td>
<td>H-1→L (0.524)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N11</td>
<td>S_0 → S_1</td>
<td>401.5</td>
<td>3.088</td>
<td>0.178</td>
<td>H-1→L+1 (0.381)</td>
<td>π → π*</td>
</tr>
<tr>
<td>N12</td>
<td>S_0 → S_1</td>
<td>381.2</td>
<td>3.253</td>
<td>1.226</td>
<td>H→L (0.573)</td>
<td>π → π*</td>
</tr>
</tbody>
</table>
Table S35: Excited state properties calculated with the B2PLYP functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>$S_0 \rightarrow S_1$</td>
<td>565.7</td>
<td>2.192</td>
<td>1.404</td>
<td>H\rightarrowL (0.722)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>$S_0 \rightarrow S_1$</td>
<td>539.7</td>
<td>2.297</td>
<td>2.449</td>
<td>H\rightarrowL (0.545)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>$S_0 \rightarrow S_1$</td>
<td>562.3</td>
<td>2.205</td>
<td>1.099</td>
<td>H\rightarrowL (0.749)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>$S_0 \rightarrow S_1$</td>
<td>523.4</td>
<td>2.369</td>
<td>1.314</td>
<td>H\rightarrowL (0.746)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>$S_0 \rightarrow S_1$</td>
<td>713.0</td>
<td>1.739</td>
<td>0.126</td>
<td>H\rightarrowL (0.808)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>$S_0 \rightarrow S_1$</td>
<td>516.3</td>
<td>2.401</td>
<td>0.941</td>
<td>H\rightarrowL (0.866)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>$S_0 \rightarrow S_1$</td>
<td>452.0</td>
<td>2.743</td>
<td>1.710</td>
<td>H-1\rightarrowL (0.879)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>$S_0 \rightarrow S_1$</td>
<td>509.8</td>
<td>2.432</td>
<td>1.054</td>
<td>H\rightarrowL (0.537)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>$S_0 \rightarrow S_1$</td>
<td>525.0</td>
<td>2.362</td>
<td>1.157</td>
<td>H\rightarrowL (0.491)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>$S_0 \rightarrow S_1$</td>
<td>560.9</td>
<td>2.210</td>
<td>0.906</td>
<td>H\rightarrowL (0.819)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>$S_0 \rightarrow S_1$</td>
<td>553.4</td>
<td>2.240</td>
<td>1.626</td>
<td>H-1\rightarrowL (0.441)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>$S_0 \rightarrow S_1$</td>
<td>542.1</td>
<td>2.287</td>
<td>0.184</td>
<td>H\rightarrowL+1 (0.283)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>$S_0 \rightarrow S_1$</td>
<td>650.5</td>
<td>1.906</td>
<td>0.594</td>
<td>H\rightarrowL (0.850)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>

Table S36: Excited state properties calculated with the B2GPPLYP functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>$S_0 \rightarrow S_1$</td>
<td>503.4</td>
<td>2.463</td>
<td>1.596</td>
<td>H\rightarrowL (0.605)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>$S_0 \rightarrow S_1$</td>
<td>494.2</td>
<td>2.509</td>
<td>2.660</td>
<td>H\rightarrowL (0.468)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>$S_0 \rightarrow S_1$</td>
<td>491.2</td>
<td>2.524</td>
<td>1.324</td>
<td>H\rightarrowL (0.626)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>$S_0 \rightarrow S_1$</td>
<td>483.2</td>
<td>2.566</td>
<td>1.441</td>
<td>H\rightarrowL (0.651)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>$S_0 \rightarrow S_1$</td>
<td>513.1</td>
<td>2.416</td>
<td>0.576</td>
<td>H\rightarrowL (0.534)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>$S_0 \rightarrow S_1$</td>
<td>491.4</td>
<td>2.523</td>
<td>0.998</td>
<td>H\rightarrowL (0.873)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>$S_0 \rightarrow S_1$</td>
<td>431.5</td>
<td>2.874</td>
<td>1.758</td>
<td>H\rightarrowL (0.540)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>$S_0 \rightarrow S_1$</td>
<td>459.9</td>
<td>2.696</td>
<td>1.202</td>
<td>H\rightarrowL (0.464)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>$S_0 \rightarrow S_1$</td>
<td>472.0</td>
<td>2.627</td>
<td>1.274</td>
<td>H\rightarrowL (0.464)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>$S_0 \rightarrow S_1$</td>
<td>489.8</td>
<td>2.531</td>
<td>1.132</td>
<td>H\rightarrowL (0.722)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>$S_0 \rightarrow S_1$</td>
<td>513.0</td>
<td>2.417</td>
<td>1.732</td>
<td>H-1\rightarrowL (0.463)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>$S_0 \rightarrow S_1$</td>
<td>497.9</td>
<td>2.490</td>
<td>0.338</td>
<td>H-1\rightarrowL (0.334)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>$S_0 \rightarrow S_1$</td>
<td>526.5</td>
<td>2.355</td>
<td>0.908</td>
<td>H\rightarrowL (0.726)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>
Table S37: Excited state properties calculated with the mPW2PLYP functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>542.5</td>
<td>2.285</td>
<td>1.472</td>
<td>H\rightarrowL (0.701)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>524.9</td>
<td>2.362</td>
<td>2.520</td>
<td>H\rightarrowL (0.529)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>534.7</td>
<td>2.319</td>
<td>1.170</td>
<td>H\rightarrowL (0.727)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>502.4</td>
<td>2.468</td>
<td>1.373</td>
<td>H\rightarrowL (0.730)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>649.0</td>
<td>1.910</td>
<td>0.164</td>
<td>H\rightarrowL (0.781)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>504.8</td>
<td>2.456</td>
<td>0.964</td>
<td>H\rightarrowL (0.868)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>502.4</td>
<td>2.468</td>
<td>1.373</td>
<td>H\rightarrowL (0.730)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>504.8</td>
<td>2.456</td>
<td>0.964</td>
<td>H\rightarrowL (0.868)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>502.4</td>
<td>2.468</td>
<td>1.373</td>
<td>H\rightarrowL (0.730)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>502.4</td>
<td>2.468</td>
<td>1.373</td>
<td>H\rightarrowL (0.730)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>502.4</td>
<td>2.468</td>
<td>1.373</td>
<td>H\rightarrowL (0.730)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>502.4</td>
<td>2.468</td>
<td>1.373</td>
<td>H\rightarrowL (0.730)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>502.4</td>
<td>2.468</td>
<td>1.373</td>
<td>H\rightarrowL (0.730)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>

Table S38: Excited state properties calculated with the DSD-BLYP functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>532.3</td>
<td>2.329</td>
<td>1.485</td>
<td>H\rightarrowL (0.537)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>493.0</td>
<td>2.513</td>
<td>1.097</td>
<td>H\rightarrowL (0.521)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>506.9</td>
<td>2.446</td>
<td>1.200</td>
<td>H\rightarrowL (0.483)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>504.8</td>
<td>2.456</td>
<td>0.964</td>
<td>H\rightarrowL (0.868)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>504.8</td>
<td>2.456</td>
<td>0.964</td>
<td>H\rightarrowL (0.868)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>504.8</td>
<td>2.456</td>
<td>0.964</td>
<td>H\rightarrowL (0.868)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>504.8</td>
<td>2.456</td>
<td>0.964</td>
<td>H\rightarrowL (0.868)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>504.8</td>
<td>2.456</td>
<td>0.964</td>
<td>H\rightarrowL (0.868)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>504.8</td>
<td>2.456</td>
<td>0.964</td>
<td>H\rightarrowL (0.868)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>504.8</td>
<td>2.456</td>
<td>0.964</td>
<td>H\rightarrowL (0.868)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>504.8</td>
<td>2.456</td>
<td>0.964</td>
<td>H\rightarrowL (0.868)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>504.8</td>
<td>2.456</td>
<td>0.964</td>
<td>H\rightarrowL (0.868)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>S$_0 \rightarrow$ S$_1$</td>
<td>504.8</td>
<td>2.456</td>
<td>0.964</td>
<td>H\rightarrowL (0.868)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>
Table S39: Excited state properties calculated with the DSD-PBEP86 functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation (coefficient)</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>$S_0 \rightarrow S_1$</td>
<td>556.8</td>
<td>2.227</td>
<td>1.431</td>
<td>$H \rightarrow L$ (0.558)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>$S_0 \rightarrow S_1$</td>
<td>510.3</td>
<td>2.430</td>
<td>2.546</td>
<td>$H \rightarrow L$ (0.439)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>$S_0 \rightarrow S_1$</td>
<td>576.1</td>
<td>2.152</td>
<td>1.134</td>
<td>$H \rightarrow L$ (0.575)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>$S_0 \rightarrow S_1$</td>
<td>669.0</td>
<td>1.853</td>
<td>1.045</td>
<td>$H \rightarrow L$ (0.612)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>$S_0 \rightarrow S_1$</td>
<td>564.0</td>
<td>2.198</td>
<td>0.788</td>
<td>$H \rightarrow L$ (0.530)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>$S_0 \rightarrow S_1$</td>
<td>565.1</td>
<td>2.194</td>
<td>0.871</td>
<td>$H \rightarrow L$ (0.870)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>$S_0 \rightarrow S_1$</td>
<td>451.1</td>
<td>2.749</td>
<td>1.661</td>
<td>$H \rightarrow L$ (0.773)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>$S_0 \rightarrow S_1$</td>
<td>482.6</td>
<td>2.569</td>
<td>1.161</td>
<td>$H \rightarrow L$ (0.437)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>$S_0 \rightarrow S_1$</td>
<td>497.9</td>
<td>2.490</td>
<td>1.187</td>
<td>$H \rightarrow L$ (0.458)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>$S_0 \rightarrow S_1$</td>
<td>595.7</td>
<td>2.081</td>
<td>0.952</td>
<td>$H \rightarrow L$ (0.674)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>$S_0 \rightarrow S_1$</td>
<td>598.8</td>
<td>2.070</td>
<td>1.468</td>
<td>$H \rightarrow L$ (0.461)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>$S_0 \rightarrow S_1$</td>
<td>708.5</td>
<td>1.750</td>
<td>0.345</td>
<td>$H \rightarrow L$ (0.424)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>$S_0 \rightarrow S_1$</td>
<td>803.2</td>
<td>1.544</td>
<td>0.652</td>
<td>$H \rightarrow L$ (0.656)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>

Table S40: Excited state properties calculated with the ωB2PLYP functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>λ_{max} (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength</th>
<th>MO designation (coefficient)</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>$S_0 \rightarrow S_1$</td>
<td>434.7</td>
<td>2.852</td>
<td>1.747</td>
<td>$H \rightarrow L$ (0.455)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N2</td>
<td>$S_0 \rightarrow S_1$</td>
<td>437.7</td>
<td>2.833</td>
<td>2.762</td>
<td>$H \rightarrow L$ (0.354)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N3</td>
<td>$S_0 \rightarrow S_1$</td>
<td>417.8</td>
<td>2.968</td>
<td>1.525</td>
<td>$H \rightarrow L$ (0.466)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N4</td>
<td>$S_0 \rightarrow S_1$</td>
<td>415.0</td>
<td>2.987</td>
<td>1.658</td>
<td>$H \rightarrow L$ (0.553)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N5</td>
<td>$S_0 \rightarrow S_1$</td>
<td>386.6</td>
<td>3.207</td>
<td>1.384</td>
<td>$H \rightarrow L$ (0.715)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N6</td>
<td>$S_0 \rightarrow S_1$</td>
<td>442.3</td>
<td>2.803</td>
<td>1.093</td>
<td>$H \rightarrow L$ (0.842)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N7</td>
<td>$S_0 \rightarrow S_1$</td>
<td>399.0</td>
<td>3.107</td>
<td>1.804</td>
<td>$H \rightarrow L$ (0.767)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N8</td>
<td>$S_0 \rightarrow S_1$</td>
<td>399.9</td>
<td>3.100</td>
<td>1.383</td>
<td>$H \rightarrow L$ (0.400)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N9</td>
<td>$S_0 \rightarrow S_1$</td>
<td>417.4</td>
<td>2.970</td>
<td>1.353</td>
<td>$H \rightarrow L$ (0.401)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N10</td>
<td>$S_0 \rightarrow S_1$</td>
<td>410.6</td>
<td>3.020</td>
<td>1.385</td>
<td>$H \rightarrow L$ (0.581)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N11</td>
<td>$S_0 \rightarrow S_1$</td>
<td>460.0</td>
<td>2.695</td>
<td>1.694</td>
<td>$H \rightarrow L$ (0.475)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N12</td>
<td>$S_0 \rightarrow S_1$</td>
<td>418.4</td>
<td>2.963</td>
<td>0.618</td>
<td>$H \rightarrow L$ (0.418)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
<tr>
<td>N13</td>
<td>$S_0 \rightarrow S_1$</td>
<td>392.6</td>
<td>3.158</td>
<td>1.386</td>
<td>$H \rightarrow L$ (0.505)</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>
Table S41: Excited state properties calculated with the ωB2GPPLYP functional.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Electronic transition</th>
<th>(\lambda_{\text{max}}) (nm)</th>
<th>Optical gap (eV)</th>
<th>Oscillator strength (coefficient)</th>
<th>MO designation</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>(S_0 \to S_1)</td>
<td>436.0</td>
<td>2.844</td>
<td>1.741</td>
<td>(H\to L) (0.457)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N2</td>
<td>(S_0 \to S_1)</td>
<td>437.5</td>
<td>2.834</td>
<td>2.783</td>
<td>(H\to L) (0.363)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N3</td>
<td>(S_0 \to S_1)</td>
<td>419.4</td>
<td>2.956</td>
<td>1.517</td>
<td>(H\to L) (0.467)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N4</td>
<td>(S_0 \to S_1)</td>
<td>417.8</td>
<td>2.968</td>
<td>1.648</td>
<td>(H\to L) (0.537)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N5</td>
<td>(S_0 \to S_1)</td>
<td>386.3</td>
<td>3.209</td>
<td>1.412</td>
<td>(H-1\to L) (0.736)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N6</td>
<td>(S_0 \to S_1)</td>
<td>444.9</td>
<td>2.787</td>
<td>1.094</td>
<td>(H\to L) (0.848)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N7</td>
<td>(S_0 \to S_1)</td>
<td>398.9</td>
<td>3.108</td>
<td>1.804</td>
<td>(H\to L) (0.777)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N8</td>
<td>(S_0 \to S_1)</td>
<td>399.7</td>
<td>3.102</td>
<td>1.385</td>
<td>(H-1\to L) (0.388)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N9</td>
<td>(S_0 \to S_1)</td>
<td>416.8</td>
<td>2.975</td>
<td>1.350</td>
<td>(H\to L) (0.429)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N10</td>
<td>(S_0 \to S_1)</td>
<td>412.2</td>
<td>3.008</td>
<td>1.384</td>
<td>(H\to L) (0.573)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N11</td>
<td>(S_0 \to S_1)</td>
<td>462.2</td>
<td>2.682</td>
<td>1.749</td>
<td>(H-1\to L) (0.459)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N12</td>
<td>(S_0 \to S_1)</td>
<td>414.2</td>
<td>2.994</td>
<td>0.985</td>
<td>(H-1\to L) (0.483)</td>
<td>(\pi \to \pi^*)</td>
</tr>
<tr>
<td>N13</td>
<td>(S_0 \to S_1)</td>
<td>395.7</td>
<td>3.133</td>
<td>1.432</td>
<td>(H\to L) (0.497)</td>
<td>(\pi \to \pi^*)</td>
</tr>
</tbody>
</table>

Figure S1: Relative maximum errors (Max) of TD-DFT excitation energies.
Figure S2: Relative minimum errors (Min) of TD-DFT excitation energies.

Figure S3: Linear determination coefficients (R^2) of TD-DFT excitation energies.
Figure S4: Molecular orbitals (HOMO-1, HOMO, LUMO and LUMO+1) involved in the main transitions of the dye sensitizers (N1–N13). Isosurface value = 0.02.
Figure S4: (Cont.) Molecular orbitals (HOMO-1, HOMO, LUMO and LUMO+1) involved in the main transitions of the dye sensitizers (N1–N13). Isosurface value = 0.02.