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Instrumentation

'H and '3C NMR measurements were recorded on a Bruker Avance Neo 400 instrument ("H 400 MHz and '*C 100
MHz). UV/Vis spectra were recorded on a JASCO V-750 spectrometer with a JASCO ETCS-761 temperature
controller. Elemental analysis and FAB mass spectroscopy were performed at the Research Institute for

Instrumental Analysis, Advanced Science Research Center, Kanazawa University.

Materials.

All reagents and solvents for synthesis and measurement were used as received without further purification. 2,6-
Dichloro-1,4-benzoquinone (DCBQ) (>97%(NMR)) and n-hexane (Spectrochemical Analysis grade,
>97%(Capillary GC)) was purchased from FUJIFILM Wako Pure Chemical Corporation. 1,2-Diethoxybenzene
(DEB) (>98%(GC()), 2-isobutoxynaphthalene (Nap) (>98%(GC)) and octamethyltrisiloxane (OMTS) (>98%(GC))
were purchased from Tokyo Chemical Industry Co ., Ltd. Poly(dimethylsiloxane) (PDMS) (M,, = 2000 g/mol) was
purchased from Sigma-Aldrich. PMDISi and PySi were synthesized by previously reported methods.!
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Scheme S1. Synthetic schemes of NDISi, AntSi and DAN.



Synthesis of 1
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Naphthalenetetracarboxylic dianhydride (2.68 g, 10 mmol) and 3-amino-1,2-propanediol (3.64 g, 40 mmol) in water

(30 mL) was heated at 80 °C for 1day. After the reaction mixture was cooled to room temperature, it was filtrated
and washed with water. The residue was dried in vacuo to obtain compound 1 as white solid (3.47 g, 8.4 mmol, 84%).
'"H NMR (400 MHz, DMSO-ds, TMS standard): 8 (ppm) 3.39-3.49 (m, 4 H, CH,), 3.89-3.98 (m, 2 H, CH), 4.02 (dd,
J=4.7,129 Hz, 2 H, CH;), 4.25 (dd, J= 8.5, 12.9 Hz, 2 H, CH,), 4.63 (br-s, 2 H, OH), 4.84 (br-s, 2 H, OH), 8.66
(s, 4 H, ArH). 3C NMR (100 MHz, DMSO-d,;, TMS standard): 8 (ppm) 43.67, 64.40, 68.21, 126.03, 126.27, 130.26,
162.81. HRMS(FAB) Calcd for C,0H gN,Og [(M+H)*]: m/z 415.1141, Found: m/z 415.1139.
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'H NMR spectrum (400 MHz, DMSO-ds, TMS standard) of 1.
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To a solution of 1 (1.24 g, 3.0 mmol), 4-dimethylaminopyridine (37 mg, 0.3 mmol) and imidazole (1.63 g, 24.0
mmol) in dry DMF (4.5 mL) and dry CH,Cl, (12 mL), tris(trimethylsiloxy)chlorosilane (4.95 mL, 13.8 mmol) was
slowly added at 0 °C under N,. After the mixture was stirred for 11 h at room temperature, it was poured into water
and extracted with hexane/EtOAc (2/1). The organic layer was washed with water and dried over anhydrous Na,SO,,
followed by evaporation to dryness. The residue was purified by column chromatography (SiO,,
hexane/dichloromethane=3/1 to 2/1) to obtain NDISi as a white solid (0.51 g, 0.32 mmol, 11 %).

'"H NMR (400 MHz, CDCl;, TMS standard): 8 (ppm) -0.09 (s, 54 H, CH;), 0.13 (s, 54 H, CH3), 3.66 (dd, J = 8.2,
99 Hz, 2 H, CH>), 391 (dd, J=4.5,9.9 Hz, 2 H, CH,), 4.28 (dd, J = 3.5, 12.9 Hz, 2 H, CH,), 4.42-4.49 (m, 2 H,
CH),4.57 (dd, J=9.3,12.9 Hz, 2 H, CH,), 8.74 (s, 4 H, ArH). 3C NMR (100 MHz, CDCl;, TMS standard): & (ppm)
1.39, 1.59, 44.30, 65.47, 69.34, 126.70, 126.83, 130.84, 162.84. HRMS(FAB) Calcd for Cs¢H;23N,0,0Si;6 [(M+H)*]:
m/z 1591.4977, Found: m/z 1591.4941. Elemental analysis; calculated for Cs¢H1,0N,050Si16: C 42.22, H 7.72, N
1.76, Found: C 41.90, H 7.33, N 1.81.
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'H NMR spectrum (400 MHz, CDCl;, TMS standard) of NDISi.
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3C NMR spectrum (100 MHz, CDCl;, TMS standard) of NDISi.



Synthesis of AntSi
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To a solution of 9-anthracenemethanol (1.67 g, 8.0 mmol), 4-dimethylaminopyridine (18 mg, 0.15 mmol) and
imidazole (1.09 g, 16.0 mmol) in dry DMF (13 mL) and dry CH,Cl, (32 mL), tris(trimethylsiloxy)chlorosilane (3.3
mL, 9.2 mmol) was slowly added at 0 °C under N,. After the mixture was stirred for 5 h at room temperature, it was
poured into water and extracted with hexane/EtOAc (4/1). The organic layer was dried over anhydrous MgSO, and
evaporated to give a yellow oil. The obtained oil was chromatographed (SiO,, hexane/EtOAc=99/1 to 98/2) to obtain
AntSi as a yellow solid (1.81 g, 3.6 mmol, 45%).

'"H NMR (400 MHz, CDCl;, TMS standard): 8 (ppm) 0.06 (s, 27 H, CHj3), 5.70 (s, 2 H, CH,), 7.43-7.48 (m, 2 H,
ArH), 7.49-7.54 (m, 2 H, ArH), 8.00 (dd, J= 1.3, 8.4 Hz, 2 H, ArH), 8.42-8.46 (m, 3 H, ArH). 3C NMR (100 MHz,
CDCl;, TMS standard): & (ppm) 1.49, 57.57, 124.84, 124.86, 125.71, 127.80, 128.83, 130.59, 131.07, 131.57.
HRMS(FAB) Calcd for C,4H3504S1, [M*]: m/z 502.1847, Found: m/z 502.1848. Elemental analysis; calculated for

Cp4H3304S14: C 57.32, H 7.62, Found: C 57.11, H 7.50.
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'"H NMR spectrum (400 MHz, CDCl;, TMS standard) of AntSi.
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3C NMR spectrum (100 MHz, CDCl;, TMS standard) of AntSi.
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Under N, the mixture of 1,5-dihydroxynaphthalene (1.60 g, 10.0 mmol), 2-ethylhexyl bromide (7.72 g, 40.0 mmol),
potassium carbonate (11.05 g, 80.0 mmol) and dry acetonitrile (80 mL) was refluxed for 24h. After cooling to the
room temperature, the resulting mixture was poured into water and extracted with hexane. The organic layer was
washed with water and dried over anhydrous MgSO, followed by evaporation to dryness. The obtained oil was
purified by silica gel column chromatography (hexane) and size exclusion chromatography to obtain DAN as a
colorless solid (1.62 g, 4.2 mmol, 42%)).

'"H NMR (400 MHz, CDCl;, TMS standard): & (ppm) 0.91 (t, J=7.1 Hz, 6 H, CH;), 0.97 (t, J=7.5 Hz, 6 H, CH3),
1.29-1.42 (m, 8 H, CH>), 1.44-1.68 (m, 8 H, CH,), 1.86 (sep, J =6.1 Hz, 2 H, CH), 4.02 (dd, J =1.7, 5.5 Hz, 4 H,
CH,), 6.83 (d, J=7.6 Hz, 2 H, ArH), 7.35 (t, J =8.0 Hz, 2 H, ArH), 7.83 (d, J = 8.6 Hz, 2 H, ArH). 13C NMR (100
MHz, CDCl;, TMS standard): & (ppm) 11.28, 14.10, 23.08, 24.23,29.19, 30.85, 39.58, 70.39, 105.08, 114.01, 125.06,
126.87, 154.88. HRMS(FAB) Calcd for CsHyoO, [M*]: m/z 384.3028, Found: m/z 384.3034. Elemental analysis;
calculated for C,4H400,: C 81.20, H 10.48, Found: C 81.18, H 10.80.
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'H NMR spectrum (400 MHz, CDCl;, TMS standard) of DAN.
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13C NMR spectrum (100 MHz, CDCl;, TMS standard) of DAN.
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Fig. S1. Absorption spectra of acceptor in OMTS (green), donor in OMTS (magenta) and the mixture of donor and
acceptor in PDMS (blue), in OMTS (black) or in n-hexane (red) as the solvents in system of (a) DCBQ-DEB, (b)
PMDISi-DEB, (c) NDISi-DEB, (d) DCBQ-Nap, (¢) PMDISi-Nap, (f) NDISi-Nap, (g) DCBQ-DAN, (h) PMDISi-
DAN, (i) NDISi-DAN, (j) PMDISi-AntSi, (k) NDISi-AntSi, (1) DCBQ-PySi, (m) PMDISi-PySi and (n) NDISi-
PySi at 25 °C. Photographs showing the appearance of the solutions containing the donor and acceptor in PDMS

(right), OMTS (center) and n-hexane (left).
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Fig. S2. Normalized absorption spectra of mixture of donor and acceptor in n-hexane (red), OMTS (black) and PDMS
(blue) in system of (a) DCBQ-DEB, (b) PMDISi-DEB, (c) NDISi-DEB, (d) DCBQ-Nap, (¢) PMDISi-Nap, (f)
NDISi-Nap, (g) DCBQ-DAN, (h) PMDISi-DAN, (i) NDISi-DAN, (j) PMDISi-AntSi, (k) NDISi-AntSi, (1) DCBQ-
PySi, (m) PMDISi-PySi and (n) NDISi-PySi. The absorption spectra of DCBQ-DEB, DCBQ-Nap, DCBQ-DAN,
DCBQ-PySi pairs were subtracted by spectra of DCBQ solutions. 25 °C.



Evaluation of the association constant

The association constant (K,) for the CT complexes were determined by measuring the absorbance of charge transfer
absorption at different concentration of the solute. All measurements were carried out at 25 °C using cuvette with 1
cm path length. The association constants were evaluated by using non-linear curve fitting of the absorbance based

on the equation S1 derived from a 1:1 binding model.

1
sCTl{[A]O +[D], + Ki - j([A]o +[D], + K—)2 - 4[A]y[D]o

Absorbance = > (eq.S1)

where [D]o, [Alo, EcT and / are initial concentration of donor and acceptor molecules, molar absorption coefficient of
the CT complexes and optical path length respectively. To avoid an influence of 1:2 complex, the fittings were

performed at low concentration of the donors at which saturation fractions were less than 0.55.

The sample for evaluation of the association constant were prepared by a dilution of initial solution containing the
acceptor and the donor with the acceptor solution, in which the initial concentration of donor was large excess against
the concentration of acceptor. And the initial concentration of donor was properly selected depending on the
association constants of the solvent systems. All measurements were carried out after standing the samples more than
5 min at 25 °C. The CT absorption of CT complexes with DCBQ were overlapped with the absorption of DCBQ, the
absorbance for the calculation using eq. S1 was subtracted by the absorbance of DCBQ. The calculated value of &ct

of the CT complexes with DCBQ indicated difference between € of the CT complexes and DCBQ.
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Fig. S3. (a) Absorption spectra of DCBQ-DEB system (black) depending on concentration of DEB and absorption
spectrum of DCBQ (red) in n-hexane. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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spectrum of DCBQ (red) in PDMS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer
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Fig. S6. (a) Absorption spectra of PMDISi-DEB system (black) depending on concentration of DEB and absorption
spectrum of PMDISI (red) in n-hexane. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S7. (a) Absorption spectra of PMDISi-DEB system (black) depending on concentration of DEB and absorption

spectrum of PMDISI (red) in OMTS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S8. (a) Absorption spectra of PMDISi-DEB system (black) depending on concentration of DEB and absorption

spectrum of PMDISi (red) in PDMS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S9. (a) Absorption spectra of NDISi-DEB system (black) depending on concentration of DEB and absorption

spectrum of NDISi (red) in n-hexane. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S10. (a) Absorption spectra of NDISi-DEB system (black) depending on concentration of DEB and absorption

spectrum of NDISi (red) in OMTS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S11. (a) Absorption spectra of NDISi-DEB system (black) depending on concentration of DEB and absorption

spectrum of NDISi (red) in PDMS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S12. (a) Absorption spectra of DCBQ-Nap system (black) depending on concentration of Nap and absorption

spectrum of DCBQ (red) in n-hexane. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S13. (a) Absorption spectra of DCBQ-Nap system (black) depending on concentration of Nap and absorption
spectrum of DCBQ (red) in OMTS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S14. (a) Absorption spectra of DCBQ-Nap system (black) depending on concentration of Nap and absorption
spectrum of DCBQ (red) in PDMS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S15. (a) Absorption spectra of PMDISi-Nap system (black) depending on concentration of Nap and absorption
spectrum of PMDISI (red) in n-hexane. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S16. (a) Absorption spectra of PMDISi-Nap system (black) depending on concentration of Nap and absorption

spectrum of PMDISI (red) in OMTS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S17. (a) Absorption spectra of PMDISi-Nap system (black) depending on concentration of Nap and absorption

spectrum of PMDISi (red) in PDMS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S18. (a) Absorption spectra of NDISi-Nap system (black) depending on concentration of Nap and absorption

spectrum of NDISi (red) in n-hexane. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S19. (a) Absorption spectra of NDISi-Nap system (black) depending on concentration of Nap and absorption

spectrum of NDISi (red) in OMTS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S20. (a) Absorption spectra of NDISi-Nap system (black) depending on concentration of Nap and absorption

spectrum of NDISi (red) in PDMS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S21. (a) Absorption spectra of DCBQ-DAN system (black) depending on concentration of DAN and absorption
spectrum of DCBQ (red) in n-hexane. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S22. (a) Absorption spectra of DCBQ-DAN system (black) depending on concentration of DAN and absorption
spectrum of DCBQ (red) in OMTS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S23. (a) Absorption spectra of DCBQ-DAN system (black) depending on concentration of DAN and absorption
spectrum of DCBQ (red) in PDMS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S24. (a) Absorption spectra of PMDISi-DAN system (black) depending on concentration of DAN and absorption
spectrum of PMDISIi (red) in n-hexane. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S25. (a) Absorption spectra of PMDISi-DAN system (black) depending on concentration of DAN and absorption

spectrum of PMDISI (red) in OMTS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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spectrum of PMDISi (red) in PDMS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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spectrum of NDISi (red) in n-hexane. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S28. (a) Absorption spectra of NDISi-DAN system (black) depending on concentration of DAN and absorption

spectrum of NDISi (red) in OMTS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S29. (a) Absorption spectra of NDISi-DAN system (black) depending on concentration of DAN and absorption

spectrum of NDISi (red) in PDMS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S30. (a) Absorption spectra of PMDISi-AntSi system (black) depending on concentration of AntSi and

absorption spectrum of PMDISI (red) in n-hexane. (b) Non-linear curve fitting of the variation of absorbance of

charge-transfer absorption.
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Fig. S31. (a) Absorption spectra of PMDISi-AntSi system (black) depending on concentration of AntSi and
absorption spectrum of PMDISI (red) in OMTS. (b) Non-linear curve fitting of the variation of absorbance of charge-

transfer absorption.
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Fig. S32. (a) Absorption spectra of PMDISi-AntSi system (black) depending on concentration of AntSi and
absorption spectrum of PMDISI (red) in PDMS. (b) Non-linear curve fitting of the variation of absorbance of charge-

transfer absorption.
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Fig. S33. (a) Absorption spectra of NDISi-AntSi system (black) depending on concentration of AntSi and absorption

spectrum of NDISi (red) in n-hexane. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S34. (a) Absorption spectra of NDISi-AntSi system (black) depending on concentration of AntSi and absorption

spectrum of NDISi (red) in OMTS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
(a) 0.6 - (b)g 06
3:0.5 . _(E 505
S04 4 5 © 0.4
U] .
%8'2 2 E03
. o
¥e! c 802 —Fitting curve
2 0.1 - o
2 4 _*g <01 <& Observed
'01 T g 0.....,----.----.----|
450 550 650 750 0 0.01 0.02 0.03 0.04
Wavelength / nm Concentration of AntSi / M-

Fig. S35. (a) Absorption spectra of NDISi-AntSi system (black) depending on concentration of AntSi and absorption

spectrum of NDISi (red) in PDMS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S36. (a) Absorption spectra of DCBQ-PySi system (black) depending on concentration of PySi and absorption
spectrum of DCBQ (red) in n-hexane. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.



@ o9 B)8 o3
. 507
o~ U
g 0.7 S %06
o] o .
§ 0.3 |5 % 0.3 —Fitting curve
20.1 © 5 0.2 & Observed
0.1 g 0
- - 1 T T T T T T T T T T T T T T T L 1 0
460 560 660 760 0 005 01 015 02

Wavelength / nm

Concentration of PySi / M-

Fig. S37. (a) Absorption spectra of DCBQ-PySi system (black) depending on concentration of PySi and absorption
spectrum of DCBQ (red) in OMTS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S38. (a) Absorption spectra of DCBQ-PySi system (black) depending on concentration of PySi and absorption
spectrum of DCBQ (red) in PDMS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S39. (a) Absorption spectra of NDISi-PySi system (black) depending on concentration of PySi and absorption
spectrum of NDISi (red) in n-hexane. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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Fig. S40. (a) Absorption spectra of NDISi-PySi system (black) depending on concentration of PySi and absorption

spectrum of NDISi (red) in OMTS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.
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spectrum of NDISi (red) in PDMS. (b) Non-linear curve fitting of the variation of absorbance of charge-transfer

absorption.

Table S1. Molar absorption coefficient of the CT complexes calculated by using eq. S1.

Eor (M—] Cm—l)u

gor (M em!)?

DA pair DA pair
n-hexane OMTS PDMS n-hexane OMTS PDMS
DCBQ- PMDISi-
400 (450 nm) 370 (450nm) 390 (450 nm) ’ 1500 (445 nm) 1600 (445 nm) 1700 (445 nm)
DEB AntSi
DCBQ- PMDISi-
690° (475 nm) 700% (475 nm) 700% (475 nm) i 520 (468 nm) 480 (468 nm) 480 (468 nm)
Nap PySi
DCBQ- NDISi-
5600 (551nm)  540° (551nm)  570° (551 nm) 400 (440 nm) 410 (440 nm) 400 (440 nm)
DAN DEB
DCBQ- NDISi-
) 600% (567nm)  570° (567nm) 630 (567 nm) 520 (450 nm) 530 (450 nm) 580 (450 nm)
PySi Nap
PMDISi- NDISi-
310 (390 nm) 320 (390 nm) 320 (390 nm) 410 (508 nm) 430 (508 nm) 460 (508 nm)
DEB DAN
PMDISi- NDISi-
770 (401 nm) 790 (401 nm) 830 (401 nm) . 390 (506 nm) 390 (506 nm) 430 (506 nm)
Nap AntSi
PMDISi- NDISi-
DAN 1100 (465 nm) 1100 (465 nm) 1200 (465 nm) s 690 (527 nm) 670 (527 nm) 700 (527 nm)
ySi

@ Wavelength of CT absorption for non-linear curve fitting in parentheses. ® The values of &cr of the CT complexes with DCBQ indicated difference

between &cr of the CT complexes and DCBQ due to overlap between the CT absorption and the absorption of DCBQ.
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