Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

## The role of synthesis vis-à-vis oxygen vacancies of Co<sub>3</sub>O<sub>4</sub> in oxygen evolution reaction

## Saraswati Roy<sup>1</sup>, Nayana Devaraj<sup>2</sup>, Kartick Tarafder<sup>2</sup>, Chanchal Chakraborty<sup>1,3</sup>, Sounak Roy<sup>1,3\*</sup>

<sup>1</sup>Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad – 500078, India <sup>2</sup>Department of Physics, National Institute of Technology Karnataka, Mangalore-575025, India <sup>3</sup>Materials Center for Sustainable Energy & Environment, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad – 500078, India

> \*Corresponding Author Email: sounak.roy@hyderabad.bits-pilani.ac.in



Fig. S1 Rietveld refinement of the three Co-oxides



**Fig. S2** HR-TEM image of  $Co_3O_4$  (SCS) (a),  $Co_3O_4$  (ZIF) (b),  $Co_3O_4$  (CLC) (c), corresponding particle size distribution plot of  $Co_3O_4$  (SCS) (d),  $Co_3O_4$  (ZIF) (e),  $Co_3O_4$  (CLC) (f).





## Calculation of electrochemical active surface areas (ECSA):

The ECSA was measured using chronoamperometry fast study which was carried out in the presence of 0.01 M potassium ferricyanide and 0.1 M KCl as an electrolyte. Finally, the ESCA was calculated using the Cottrell equation:

$$Q = 2nFAD^{1/2} C_0 t^{\frac{1}{2}} \pi^{-1/2}$$

Where Q = Charge in coulombs

- n = Number of electrons being transferred
- F = Faraday constant (96,485 C/mol)

$$A = ECSA (cm^2)$$

D = Diffusion coefficient for  $K_3[Fe(CN)_6]$  (7.6 x 10<sup>-6</sup> cm<sup>2</sup>/s)

 $C_0 = Concentration of K_3[Fe(CN)_6] (mol/cm^3)$ 

t = time(s)



Fig. S4 LSV plot of the three Co-oxides normalized with BET surface area.