The role of synthesis vis-à-vis oxygen vacancies of $\mathrm{Co}_{3} \mathrm{O}_{4}$ in oxygen evolution reaction

Saraswati Roy ${ }^{1}$, Nayana Devaraj ${ }^{2}$, Kartick Tarafder ${ }^{2}$, Chanchal Chakraborty ${ }^{1,3}$, Sounak Roy ${ }^{1,3^{*}}$

${ }^{1}$ Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad - 500078, India
${ }^{2}$ Department of Physics, National Institute of Technology Karnataka, Mangalore-575025, India
${ }^{3}$ Materials Center for Sustainable Energy \& Environment, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad - 500078, India

*Corresponding Author
Email: sounak.roy@hyderabad.bits-pilani.ac.in

Fig. S1 Rietveld refinement of the three Co-oxides

Fig. S2 HR-TEM image of $\mathrm{Co}_{3} \mathrm{O}_{4}$ (SCS) (a), $\mathrm{Co}_{3} \mathrm{O}_{4}$ (ZIF) (b), $\mathrm{Co}_{3} \mathrm{O}_{4}$ (CLC) (c), corresponding particle size distribution plot of $\mathrm{Co}_{3} \mathrm{O}_{4}$ (SCS) (d), $\mathrm{Co}_{3} \mathrm{O}_{4}$ (ZIF) (e), $\mathrm{Co}_{3} \mathrm{O}_{4}$ (CLC) (f).

Fig. S3 The electrochemical active surface area (ECSA) of the three of the three Co-oxide.
Calculation of electrochemical active surface areas (ECSA):
The ECSA was measured using chronoamperometry fast study which was carried out in the presence of 0.01 M potassium ferricyanide and 0.1 M KCl as an electrolyte. Finally, the ESCA was calculated using the Cottrell equation:
$Q=2 n F A D^{1 / 2} C_{0} t^{1 / 2} \pi^{-1 / 2}$
Where $\mathrm{Q}=$ Charge in coulombs
$\mathrm{n}=$ Number of electrons being transferred
F = Faraday constant $(96,485 \mathrm{C} / \mathrm{mol})$
$\mathrm{A}=\mathrm{ECSA}\left(\mathrm{cm}^{2}\right)$
$\mathrm{D}=$ Diffusion coefficient for $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]\left(7.6 \times 10^{-6} \mathrm{~cm}^{2} / \mathrm{s}\right)$
$\mathrm{C}_{0}=$ Concentration of $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]\left(\mathrm{mol} / \mathrm{cm}^{3}\right)$
$\mathrm{t}=$ time (s)

Fig. S4 LSV plot of the three Co-oxides normalized with BET surface area.

