Supporting Information

New. J. Chem.

Total Synthesis of Myristinins A-F and 3'-Hydroxy-5,7-dimethoxy-4-O-2'-cycloflavan by Iterative Generation of *o*-Quinone Methides

Santosh J. Gharpure,* S. Jegadeesan and Dharmendra S. Vishwakarma

Department of Chemistry, Indian Institute of Technology Bombay, Maharashtra 400076, India. Fax: +91-22-2576 7152; Tel: +91-22-2576 7171; E-mail: sigharpure@iitb.ac.in

Table of Contents

• General				•••••	••••	•••••	•••••	S1	
Б							c		

An iterative generation of *o*-quinone methides (*o*-QMs) and [4+2] cycloaddition followed by inter/intra-molecular Michael addition in the cascade sequence.

General experimental

Melting points are recorded using Tempo melting point apparatus in capillary tubes and are uncorrected. IR spectra were recorded on Nicolet 6700 spectrophotometer and JASCO, FT/IR-4100 spectrophotometer. ¹H (400 and 500 MHz) and ¹³C (100 and 125MHz) spectra were recorded on Bruker Avance 400 and 500 spectrophotometers. The chemical shifts (δ ppm) and coupling constants (Hz) are reported in the standard fashion with reference to internal chloroform (at 7.26 ppm for ¹H and the central line 77.16 ppm for ¹³C of CDCl₃). In the ¹³C NMR spectra, the nature of the carbons (C, CH, CH₂ or CH₃) was determined by recording the DEPT-135 experiment and is given in parentheses. NOE spectrum was recorded in Bruker Avance 400 spectrophotometer. ¹H-¹H NOESY spectrum was recorded in Bruker Avance 500 spectrometer. High resolution mass measurements were carried out using Micro mass Q-ToF instrument using direct inlet mode. Analytical thin-layer chromatography (TLC) was performed on glass plates (7.5 x 2.5 and 7.5 x 5.0 cm) coated with Merck silica gel G containing 13% calcium sulphate as binder or on pr 0.2 mm thick Merck 60 F245 silica plates and various combinations of ethyl acetate and hexanes were used as eluent. Visualization of spots was accomplished by exposure to iodine vapour and KMnO₄ stains. All compounds were purified using silica gel [Acme's silica gel (100-200 mesh)] chromatography (approximately 15-20 g per 1 g of the crude product) and gave spectroscopic data consistent with being \geq 95% the assigned structure. All small-scale dry reactions were carried out using standard syringe septum technique. Dry THF was obtained by distillation over sodium-benzophenone ketyl. dichloromethane, benzene, acetonitrile and chloroform were distilled from calcium hydride prior to use.

EXPERIMENTAL PROCEDURES AND SPECTRAL DATA

Note: In the cases wherein diastereomeric mixtures of products were obtained, the data for the major isomer have been mentioned and the diastereomeric ratio measured on the crude reaction mixture by ${}^{1}HNMR$.

Experimental Procedure for the synthesis of cassiaflavans

(2S*,4S*)-2-phenyl-4-(2,4,6-trimethoxyphenyl)chroman (10a):

To a cold (0 °C) magnetically stirred solution of salicylaldehyde (7a) (87 μ L, 0.82 mmol), (±)camphor sulphonic acid (CSA) (9.5 mg, 0.04 mmol), in dry CH₃CN (8 mL), was added trimethyl orthoformate (136 μ L, 1.23 mmol) and stirred for 10 min. Then the styrene (8a) (141 μ L, 1.23 mmol) was added slowly at 0 °C the resulting mixture was stirred at room temperature, and then the trimethoxy benzene (9a) (207 mg, 1.23 mmol,) in dry CH₃CN (2 mL), was slowly added at 0 °C the resulting mixture was stirred for 1h at 0 °C then slowly warmed to room temperature. After completion of the reaction (TLC control), the reaction mixture was carefully quenched with saturated sodium hydrogen carbonate solution (10 mL). The aqueous layer was extracted with diethyl ether (3 x 20 mL), the combined organic layer was washed with brine and dried over anhydrous sodium sulphate. Evaporation of the solvent and purification of the residue on silica gel column, using EtOAc:petroleum ether (from 1% to 15% ethyl acetate) as an eluent afforded the required bicyclic product 10a (205 mg, 66%).

Physical appearance: white foamy solid.

R_f: 0.6 (1: 3, EtOAc:petroleum ether).

IR (neat): 2925, 2854, 1626, 1599, 1427, 1221, 1135, 1107, 1121, 902, 753cm⁻¹.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.62-7.56 (m, 2H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.38 (d, *J* = 7.3 Hz, 1H), 7.12 (ddd, *J* = 8.5, 6.0, 2.7 Hz,

1H), 6.99 (d, *J* = 8.1 Hz, 1H), 6.82 (q, *J* = 4.6, 3.9 Hz, 2H), 6.29 (d, *J* = 2.4 Hz, 1H), 6.18 (d, *J* = 2.4 Hz, 1H), 5.26 (dd, *J* = 11.6, 1.9 Hz, 1H), 5.05 (dd, *J* = 12.0, 5.9 Hz, 1H), 3.92 (s, 3H), 3.87 (s, 3H), 3.50 (s, 3H), 2.77 (q, *J* = 12.3 Hz, 1H), 2.19 (ddd, *J* = 13.3, 5.9, 1.9 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*, DEPT): *δ*160.0 (C), 159.8 (C), 159.3 (C), 155.3 (C), 142.0 (C), 128.5 (2 x CH), 127.8 (CH), 127.5 (CH), 127.4 (C), 126.3 (CH), 126.3 (2 x CH), 120.2 (CH), 116.5 (CH), 112.7 (C), 92.3 (CH), 90.7 (CH), 78.8 (CH), 56.1 (OCH₃), 55.6 (OCH₃), 55.3 (OCH₃), 35.1 (CH₂), 32.1 (CH).

HRMS (ESI, M+Na⁺): m/z calcd. for C₂₄H₂₄NaO₄ 433.1985, found 433.1987.

(2S*,4S*)-6-methoxy-2-phenyl-4-(2,4,6-trimethoxyphenyl)chroman (10b):

The reaction of salicylaldehyde 7b (82 μ L, 0.66 mmol), styrene (8a) (115 μ L, 0.99 mmol) and trimethoxy benzene (9a) (166 mg, 0.99 mmol) in the presence of (\pm) -camphor sulphonic acid (CSA) (7.6 mg, 0.03 mmol) and trimethyl orthoformate (110 μ L, 0.9858 mmol) in dry CH₃CN (8 mL) at 0 °C to room temperature as described for the bicyclic product 10a followed by purification on a silica gel column using EtOAc:petroleum ether (from 1% to 25% ethyl acetate) as eluent furnished the bicyclic product **10b** (191 mg, 71%).

Physical appearance: White solid.

R_f: 0.6 (1:3, EtOAc:petroleum ether).

IR (neat): 2815, 2794, 1624, 1600, 1428, 1231, 1138, 1109, 1100, 901, 752 cm⁻¹.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.52 (d, J = 7.5 Hz, 2H), 6.91 (d, *J* = 8.7 Hz, 1H), 6.66 (ddd, *J* = 14.8, 8.9, 3.1 Hz, 2H),

6.34 (dd, J = 10.9, 3.1 Hz, 2H), 6.28-6.19 (m, 1H), 6.17 (s, 2H), 4.94 (dd, J = 12.0, 6.1 Hz, 2H)1H), 4.53 (t, J = 6.6 Hz, 1H), 3.65 (s, 6H), 3.60 (s, 3H), 3.49 (s, 3H), 2.67 (q, J = 12.2 Hz, 1H), 2.31 (dt, *J* = 13.9, 7.0 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-d, DEPT): δ 161.6 (C), 159.8 (C), 159.4 (C), 153.7 (C), 149.8 (C), 142.5 (C), 128.5 (2 x CH), 127.9 (CH), 126.3 (2 x CH), 116.8 (CH), 114.9 (CH), 113.3 (CH), 112.3 (C),111.6 (C), 92.3 (CH), 90.7 (CH), 78.9 (CH), 56.2 (CH₃), 55.9 (CH₃), 55.4 (CH₃), 55.2 (CH₃), 35.1 (CH₂), 32.4 (CH).

HRMS (ESI, M+Na⁺): m/z calcd. for C₂₅H₂₆NaO₅ 429.1672, found 429.1675.

(2S*,4S*)-2-(benzo[d][1,3]dioxol-5-yl)-6-bromo-4-(2,4,6-trimethoxyphenyl)chroman (10c): The reaction of salicylaldehyde 7c (100 mg, 0.4974 mmol), styrene 8b (111 mg, 0.75 mmol) and trimethoxy benzene (9a) (126 mg, 0.75 mmol) in the presence of (\pm) -campbor sulphonic acid (CSA) (5.7 mg, 0.03 mmol) and trimethyl orthoformate (83 μ L, 0.75 mmol) in dry CH₃CN (8 mL) at 0 °C to room temperature as described for the bicyclic product 10a followed by purification on a silica gel column using EtOAc:petroleum ether (from 1% to 25% ethyl acetate) as eluent furnished the bicyclic product **10c** (194 mg, 78%).

MeO

MeO

OMe

10b

OMe

Physical appearance: White Solid.

R_f: 0.4 (1: 3, EtOAc:petroleum ether).

IR (neat): 2925, 2854, 1626, 1609, 1437, 1221, 1146, 1131, 1101, 904, 756cm⁻¹.

¹**H NMR (500 MHz, Chloroform-***d***):** *δ*7.12 (d, *J* = 8.8 Hz, 1H), 7.00 (s, 1H), 6.91 (dd, *J* = 19.4, 10.4 Hz, 1H), 6.85-6.79 (m, 2H), 6.76 (d, *J* = 8.5 Hz, 1H), 6.21 (s, 1H), 6.11 (s, 1H),

5.96 (s, 2H), 5.05 (d, *J* = 11.5 Hz, 1H), 4.87 (dd, *J* = 12.1, 5.9 Hz, 1H), 3.84 (d, *J* = 12.6 Hz, 6H), 3.48 (s, 3H), 2.58 (q, *J* = 12.3 Hz, 1H), 2.04 (dd, *J* = 13.6, 5.7 Hz, 1H).

¹³C NMR (125 MHz, Chloroform-*d*, DEPT): *δ*160.3 (C), 159.6 (C), 159.2 (C), 154.5 (C), 147.9 (C), 147.4 (C), 135.5 (C), 130.7 (C), 130.0 (C), 129.9 (CH), 120.0 (CH), 112.5 (C), 111.7 (CH), 108.3 (CH), 107.0 (C), 106.8 (CH), 101.1 (CH₂), 92.3 (CH), 90.8 (CH), 78.9 (CH), 56.1 (CH₃), 55.6 (CH₃), 55.4 (CH₃), 34.7 (CH₂), 32.1 (CH).

HRMS (ESI, M+Na⁺): m/z calcd. for C₂₅H₂₃BrNaO₆ 521.0570, found 521.0572.

(2S*,4S*)-2-(4-(benzyloxy)phenyl)-4-(2,4,6-trimethoxyphenyl)chroman (10d):

The reaction of salicylaldehyde (7a) (87 μ L, 0.82 mmol), styrene 8c (258 mg, 1.23 mmol,) and trimethoxy benzene (9a) (207 mg, 1.23 mmol) in the presence of (±)-camphor sulphonic acid (CSA) (0.0497 mmol, 9.5 mg) and trimethyl orthoformate (136 μ L, 1.23 mmol) in dry CH₃CN (8 mL) at 0 °C to room temperature as described for the bicyclic product 10a followed by purification on a silica gel column using EtOAc:petroleum ether (from 1% to 25% ethyl acetate) as eluent furnished the bicyclic product 10d (312 mg, 78%).

Physical appearance: white solid.

Rf: 0.6 (1: 3, EtOAc:petroleum ether).

IR (neat): 2945, 2866, 1637, 1587, 1436, 1231, 1144, 1102, 1131, 908, 753cm⁻¹.

¹H NMR (400 MHz, Chloroform-*d*): δ 7.50-7.34 (m, 4H), 7.34 (td, J = 4.4, 2.1 Hz, 2H), 7.13-6.94 (m, 2H), 6.91 (d, J =8.0 Hz, 1H), 6.85-6.70 (m, 2H), 6.24 (d, J = 2.3 Hz, 2H), 6.19-

6.10 (m, 2H), 5.15 (dd, *J* = 11.6, 1.8 Hz, 1H), 5.10 (s, 2H), 4.96 (dd, *J* = 11.9, 5.9 Hz, 1H), 3.86 (d, *J* = 15.1 Hz, 6H), 3.46 (s, 3H), 2.71 (dt, *J* = 13.3, 11.8 Hz, 1H), 2.10 (ddd, *J* = 13.7, 6.2, 2.1 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*, DEPT): *δ*160.0 (C), 159.8 (C), 159.3 (C), 158.5 (C), 155.4 (C), 137.2 (C), 134.5 (C), 128.7 (2 x CH), 128.0 (CH), 127.7 (CH), 127.6 (C), 127.5 (2 x CH), 127.3 (2 x CH), 126.3 (CH), 120.2 (CH), 116.5 (CH), 114.8 (2 x CH), 112.8 (CH), 92.4 (CH), 90.7 (CH), 78.6 (CH), 70.1 (CH₂), 56.2 (OCH₃), 55.7 (CH₃), 55.4 (CH₃), 34.9 (CH₂), 32.2 (CH).

HRMS (ESI, M+Na⁺): m/z calcd. for C₃₁H₃₀NaO₅ 505.1985, found 505.1987.

(2S*,4S*)-2-(4-methoxyphenyl)-4-(2,4,6-trimethoxyphenyl)chroman (10e):

The reaction of salicylaldehyde (7a) (87 μ L, 0.82 mmol), styrene 8d (165 mg, 1.23 mmol) and trimethoxy benzene (9a) (207 mg, 1.23 mmol) in the presence of (±)-camphor sulphonic acid (CSA) (9.5 mg, 0.05 mmol) and trimethyl orthoformate (136 μ L, 1.23 mmol) in dry CH₃CN (8 mL) at 0 °C to room temperature as described for the bicyclic product 10a followed by purification on a silica gel column using EtOAc:petroleum ether (from 1% to 25% ethyl acetate) as eluent furnished the bicyclic product 10e (251 mg, 75%).

Physical appearance: Pale red foamy solid.

R_f: 0.6 (1: 3, EtOAc:petroleum ether).

IR (neat): 2926, 2864, 1625, 1596, 1422, 1228, 1132, 1105, 1129, 904, 751cm⁻¹.

¹**H NMR (400 MHz, Chloroform-***d***):** δ 7.45 (d, *J* = 8.2 Hz, 2H), 7.08 (dd, *J* = 11.9, 5.9 Hz, 1H), 7.07-7.01 (m, 1H), 6.93

(dt, *J* = 15.5, 9.1 Hz, 4H), 6.79 (s, 1H), 6.23 (s, 1H), 5.15 (d, *J* = 11.5 Hz, 1H), 4.96 (dd, *J* = 12.0, 5.9 Hz, 1H), 3.85 (s, 3H), 3.79 (s, 3H), 3.58 (s, 3H), 3.45 (s, 3H), 2.71 (q, *J* = 12.2 Hz, 1H), 2.09 (dd, *J* = 13.4, 6.0 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*, DEPT): δ160.0 (C), 159.8 (C), 159.6 (C), 159.3 (C), 155.4 (C), 134.2 (C), 127.7 (2 x CH), 127.5 (CH), 127.3 (C), 126.3 (2 x CH), 120.2 (CH), 116.5 (CH), 113.9 (CH), 112.8 (C), 92.4 (CH), 90.7 (CH), 78.6 (CH), 56.3 (CH₃), 55.9 (CH₃), 55.7 (CH₃), 55.4 (CH₃), 34.9 (CH₂), 32.2 (CH).

HRMS (ESI, M+Na⁺): m/z calcd. for C₂₅H₂₆NaO₅ 429.1672, found 429.1675.

4-((2S*,4R*)-2-phenylchroman-4-yl)benzene-1,3-diol (10f):

The reaction of salicylaldehyde (7a) (87 μ L, 0.82 mmol,), styrene 8a (145 μ L, 1.23 mmol) and resorcinol (9b) (135 mg, 1.23 mmol) in the presence of (±)-camphor sulphonic acid (CSA) (9.5 mg, 0.05 mmol) in dry CH₃CN (8 mL) at 0 °C to room temperature as described for the bicyclic product 10a followed by purification on a silica gel column using ethyl acetate:petroleum ether (from 1% to 25% ethyl acetate) as eluent furnished the bicyclic product 10f (179 mg, 69%).

Physical appearance: Pale brown foamy solid.

R_f: 0.4 (1:3, EtOAc:petroleum ether).

IR (neat): 3341, 2925, 2854, 1626, 1599, 1427, 1221, 1135, 1107, 1121, 902, 753cm⁻¹.

¹**H NMR (400 MHz, CD₃CN):** δ7.52-7.21 (m, 2H), 7.16 (dd, *J* = 16.2, 8.5 Hz, 1H), 7.02 (d, *J* = 8.1 Hz, 1H), 7.01-6.82 (m, 2H), 6.75 (h, *J* =

7.5 Hz, 1H), 6.48 (d, *J* = 8.2 Hz, 1H), 6.40-6.21 (m, 4H), 5.01 (dd, *J* = 10.0, 2.9 Hz, 1H), 4.44-4.28 (m, 1H), 2.41 (s, 2H), 2.35-2.17 (m, 2H).

¹³C NMR (100 MHz, CD₃CN, DEPT): δ 157.4 (C), 156.7 (C), 155.8 (C), 142.8 (C), 132.0 (CH), 131.6 (CH), 131.2 (CH), 129.5 (2 x CH), 128.7 (CH), 127.2 (2 x CH), 127.1 (C), 125.1 (CH), 121.5 (CH), 117.6 (CH), 107.9 (CH), 103.4 (CH), 74.7 (CH), 36.8 (CH₂), 34.5 (CH). HRMS (ESI, M+Na⁺): m/z calcd. for C₂₁H₁₈NaO₃ 341.1149, found 341.1149.

2,4,6-trimethoxy-3-((2S*,4S*)-7-methoxy-2-(4-methoxyphenyl)chroman-4-yl)benzaldehyde (10g):

The reaction of salicylaldehyde **7d** (125 mg, 0.8215 mmol), styrene **8c** (166 mg, 1.23 mmol) and trimethoxy benzene **9c** (242 mg, 1.23 mmol) in the presence of (\pm)-camphor sulphonic acid (CSA) (9.5 mg, 0.04 mmol,) and trimethyl orthoformate (136 μ L, 1.23 mmol) in dry CH₃CN (8 mL) at 0 °C to room temperature as described for the bicyclic product **10a** followed by purification on a silica gel column using EtOAc:petroleum ether (from 1% to 25% ethyl acetate) as eluent furnished the bicyclic product **10g** (272 mg, 71%).

Physical Appearance: Pale red foamy solid.

R_f: 0.4 (1:4, EtOAc:petroleum ether).

IR (neat): 2932, 2835, 1614, 1728, 1620, 1455, 1432, 1386, 1327, 1248, 1159, 1104, 1016, 831, 807, 739 cm⁻¹. ¹H NMR (500 MHz, Chloroform-*d*): δ 10.31 (d, *J* = 2.1 Hz, 1H), 7.34 (dd, *J* = 8.6, 2.3 Hz, 2H), 6.42 (dt, *J* = 6.7,

2.4 Hz, 2H), 6.28 (s, 1H), 6.28-6.18 (m, 2H), 6.17 (d, *J* = 2.1 Hz, 1H), 4.96 (d, *J* = 11.3 Hz, 1H), 4.79 (ddd, *J* = 25.2, 11.9, 6.2 Hz, 1H), 3.93 (s, 3H), 3.78 – 3.67 (m, 6H), 3.65 (dd, *J* = 8.5, 2.1 Hz, 3H), 3.52 (d, *J* = 2.2 Hz, 3H), 2.63-2.51 (m, 1H), 2.07-1.93 (m, 1H).

¹³C NMR (125 MHz, Chloroform-*d*, DEPT): *δ*187.7 (CH), 164.6 (C), 163.1 (C), 162.1 (C), 159.3 (C), 158.5 (C), 155.9 (C), 133.9 (C), 128.8 (CH), 128.2 (2 x CH), 126.8 (2 x CH), 119.6 (CH), 118.3 (C), 113.8 (CH), 107.3 (CH), 101.4 (CH), 92.4 (CH), 78.4 (CH), 55.9 (2 x CH₃), 55.7 (CH₃), 55.2 (2 x CH₃), 35.3 (CH₂), 31.8 (CH).

HRMS (ESI, M+Na⁺): m/z calcd. for C₂₇H₂₈NaO₇ 487.1727, found 487.1722.

1-(3-((2S,4S*)-7-(benzyloxy)-2-(4-(benzyloxy)phenyl)chroman-4-yl)-2,4,6-trimethoxyphenyl)ethanone* (10h):

The reaction of salicylaldehyde **7e** (100 mg, 0.44 mmol,), styrene **8d** (89 mg, 0.67 mmol) and trimethoxy benzene **9c** (139 mg, 0.6572 mmol) in the presence of (±)-camphor sulphonic acid (CSA) (0.0219 mmol, 5 mg) and trimethyl orthoformate (73 μ L, 0.66 mmol) in dry CH₃CN (8 mL) at 0 °C to room temperature as described for the bicyclic product **10a** followed by purification on a silica gel column using EtOAc:petroleum ether (from 1% to 25% ethyl acetate) as eluent furnished the bicyclic product **10h** (192 mg, 79%).

Physical Appearance: white foamy solid.

m.p.: 80-82 °C.

R_f: 0.3 (1:4, EtOAc:petroleum ether).

IR (neat): 2924, 2852, 1698, 1595, 1502, 1456, 1402, 1247, 1153, 1108, 1018, 831, 738 cm⁻¹.

OMe O MeO OMe OMe BnO OMe OMe OMe

Hz, 1H), 6.28 (d, *J* = 23.7 Hz, 1H), 5.15 (dd, *J* = 11.7, 1.8 Hz, 1H), 5.11-4.98 (m, 2H), 4.71 (dd, *J* = 11.9, 5.8 Hz, 1H), 3.91 (s, 3H), 3.52 (s, 6H), 2.95 (s, 3H), 2.69 (q, *J* = 12.2 Hz, 1H), 2.54 (d, *J* = 16.7 Hz, 3H), 2.09 (ddd, *J* = 13.3, 6.0, 1.9 Hz, 1H).

¹³C NMR (100 MHz, Chloroform-*d*, DEPT): δ 202.5 (C), 160.7 (C), 159.5 (C), 158.3 (C), 157.8 (C), 157.2 (C), 156.7 (C), 137.3 (C), 128.6 (2 x CH), 127.9 (CH), 127.8 (C), 127.8 (2 x CH), 127.7 (2 x CH), 127.6 (2 x CH), 127.5 (C), 118.1 (C), 114.0 (CH), 113.9 (CH), 108.1 (CH), 102.5 (CH), 93.3 (CH), 78.6 (CH), 70.1 (CH₂), 56.2 (CH₃), 55.9 (CH₃), 55.9 (CH₃), 55.4 (CH₃), 35.2 (CH₂), 32.8 (CH), 31.6 (CH₃).

HRMS (ESI, M+Na⁺): m/z calcd. for C₃₄H₃₄NaO₇ 577.2195, found 577.2195.

methyl 2-(2-((2S*,4S*)-2-(*benzo[d]*[1,3]*dioxol-5-yl*)*chroman-4-yl*)-1*H-indol-3-yl*)*acetate* (10i):

The reaction of salicylaldehyde (7a) (87 μ L, 0.82 mmol), styrene 8b (183 mg, 1.23 mmol) and indole 9d (233 mg, 1.23 mmol) in the presence of (±)-camphor sulphonic acid (CSA) (9.5 mg, 0.05 mmol) and trimethyl orthoformate (136 μ L, 1.23 mmol) in dry CH₃CN (8 mL) at 0 °C to room temperature as described for the bicyclic product 10a followed by purification on a silica gel column using EtOAc:petroleum ether (from 1% to 25% ethyl acetate) as eluent furnished the bicyclic product 10i (290 mg, 80%).

Physical appearance: Off-white foamy solid.

R_f: 0.4 (1: 3, EtOAc:petroleum ether).

IR (neat): 3491, 2937, 2873, 1745, 1647, 1597, 1438, 1215, 1137, 1107, 1126, 904, 759cm⁻¹.

¹**H NMR (500 MHz, Chloroform-***d***):** *δ*7.68-7.60 (m, 1H), 7.19-7.14 (m, 1H), 7.16-6.96 (m, 3H), 6.98-6.85 (m, 2H), 6.88 – 6.72

(m, 3H), 5.99-5.88 (m, 1H), 5.95 (s, 2H), 5.10 (dd, *J* = 9.6, 3.0 Hz, 1H), 4.56 (t, *J* = 4.6 Hz, 1H), 3.88-3.74 (m, 2H), 3.74-3.66 (s, 3H), 2.46 (qdt, *J* = 13.9, 7.1, 3.3 Hz, 2H).

¹³C NMR (125 MHz, Chloroform-*d*, DEPT): *δ*172.3 (C), 155.4 (C), 148.0 (C), 139.2 (C), 136.0 (C), 134.8 (C), 130.7 (CH), 130.3 (CH), 129.1 (CH), 128.7 (CH), 122.0 (C), 120.8 (C), 120.1 (CH), 119.6 (CH), 118.6 (C), 117.7 (CH), 111.0 (C), 109.6 (CH), 108.3 (CH), 106.7 (CH), 104.9 (CH), 101.2 (CH₂), 74.5 (CH), 52.1 (CH₃),36.4 (CH₂), 32.4 (CH), 30.4 (CH₂). HRMS (ESI, M+Na⁺): m/z calcd. for C₂₇H₂₃NNaO₅ 464.1468, found 464.1466.

Experimental Procedure for the synthesis of cycloflavans

6H,12H-6,12-methanodibenzo[b,f][1,5]dioxocine (12a):

To a magnetically stirred solution of salicylaldehyde **7a** (51 μ L, 0.48 mmol) and styrene **11a** (85 mg, 0.7 mmol) in dry CH₂Cl₂ (3 ml) was added TMOF (80 μ L, 0.7 mmol) followed by (±) CSA (11 mg, 0.048 mmol) at 0 °C. Reaction mixture slowly brought to room temperature and monitored by TLC. After disappearance of intermediate spot on TLC reaction was quenched with 5% aqueous NaOH solution (4 ml). After stirring for 5 minute extracted with CH₂Cl₂ (3 × 5 mL) and dried over anhydrous Na₂SO₄. Evaporation of the

solvent and purification of the residue over a silica gel column using EtOAc:petroleum ether (8:92) as eluent furnished methanodibenzo[b,f][1,5]dioxocine derivative **12a** (77 mg, 82 %).

Physical appearance: white solid.

M.P.: 155-157 ⁰C

R_f: 0.5 (2:8 EtOAc:petroleum ether).

IR (neat): 3026, 1606, 1585, 1483, 1218, 1115, 990, 756, cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.36 (dd, *J* = 1.2, 7.6 Hz, 2H), 7.20 (td, *J* = 1.2, 8.4 Hz, 2H), 6.91 (t, *J* = 7.2 Hz, 2H), 6.82 (d, *J* = 8.0 Hz, 2H), 5.35 (t, *J* = 2.8 Hz, 2H), 2.33 (t, *J* = 2.8 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 153.2 (2 × C), 130.9 (2 × CH), 130.7 (2 × CH), 121.4 (2 × C), 120.7 (2 × CH), 117.2 (2 × CH), 67.6 (2 × CH), 26.6 (CH₂).

HRMS (ESI, M+Na⁺): m/z calcd. for C₁₅H₁₂NaO₂ 247.0730, found 247.0737.

2-methyl-6H,12H-6,12-methanodibenzo[b,f][1,5]dioxocine (12b):

Salicylaldehyde derivative **7e** (66 mg, 0.48 mmol) was reacted with styrene **11a** (87 mg, 0.7 mmol) in presence of TMOF (80 μ L, 0.7 mmol) and (±) CSA (11 mg, 0.048 mmol) in dry CH₂Cl₂ (3 ml) at 0 °C to room temperature as described for the methanodibenzo[b,f][1,5]dioxocine derivative **12a** followed by purification on a silica gel column using EtOAc:petroleum ether (8:92) as eluent furnished the methanodibenzo[b,f][1,5]dioxocine derivative **12b** (97.8 mg, 85%).

Physical appearance: sticky white solid.

M.P.: 128-130 ⁰C

R_f: 0.5 (2:8 EtOAc:petroleum ether).

IR (neat): 2960, 1612, 1586, 1497, 1461, 1219, 1050, 1029, 754 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 7.35 (dd, J = 0.8, 7.2 Hz, 1H), 7.22-7.16 (m, 2H), 7.00 (dd, J = 1.6, 8.4 Hz, 1H), 6.90 (t, J = 7.2 Hz, 1H), 6.83 (d, J = 8.4 Hz, 1H), 6.72 (d, J = 8.4 Hz, 1H) 5.32 (t, J = 2.8 Hz, 2H), 2.31 (d, J = 2.8 Hz, 2H), 2.27 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 153.2 (C), 150.9 (C), 131.5 (CH), 131.1 (CH), 131.0 (CH), 130.6 (CH), 129.9 (C), 121.6 (C), 121.0 (C), 120.6 (CH), 117.1 (CH), 116.9 (CH), 67.8 (CH), 67.5 (CH), 26.7 (CH₂), 20.5 (CH₃).

HRMS (ESI, M+Na⁺): m/z calcd. for C₁₆H₁₄NaO₂ 261.0886, found 261.0888.

2-methoxy-6H,12H-6,12-methanodibenzo[b,f][1,5]dioxocine (12c):

Salicylaldehyde derivative **7b** (60 μ L, 0.48 mmol) was reacted with styrene **11a** (87 mg, 0.7 mmol) in presence of TMOF (80 μ L, 0.7 mmol) and (±) CSA (11 mg, 0.048 mmol) in dry CH₂Cl₂ (3 ml) at 0 °C to room temperature as described for the methanodibenzo[b,f][1,5]dioxocine derivative **12a** followed by purification on a silica gel

column using EtOAc:petroleum ether (8:92) as eluent furnished the methanodibenzo[b,f][1,5]dioxocine derivative **12c** (87.2 mg, 87%).

Physical appearance: Stick white solid.

R_f: 0.5 (2:8 EtOAc:petroleum ether).

IR (neat): 2959, 1610, 1583, 1495, 1461, 1217, 1220, 1052 755 cm⁻¹.

H 1.0

12d

н

¹H NMR (400 MHz, CDCl₃): δ 7.36 (dd, J = 0.8, 7.6 Hz, 1H),

7.20 (td, *J* = 1.2, 8.4 Hz, 1H), 6.93-6.88 (m, 2H), 6.84-6.74 (m, 3H), 5.30 (s, 2H), 3.75 (s, 3H), 2.31 (d, *J* = 2.4 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 153.5 (C), 153.2 (C), 147.0 (C), 130.9 (CH), 130.6 (CH), 121.5 (C), 120.7 (CH), 117.9 (CH), 117.6 (CH), 117.0 (CH), 114.4 (CH), 67.9 (CH), 67.4 (CH), 55.8 (CH₃), 26.7 (CH₂).

HRMS (ESI, M+H⁺): m/z calcd. for C₁₆H₁₅O₃ 255.1016, found 255.1017.

3-(benzyloxy)-6H,12H-6,12-methanodibenzo[b,f][1,5]dioxocine (12d):

Salicylaldehyde derivative **7e** (68 mg, 0.3 mmol) was reacted with styrene **11a** (55 mg, 0.45 mmol) in presence of TMOF (50 μ L, 0.45 mmol) and (±) CSA (7 mg, 0.03 mmol) in dry CH₂Cl₂ (2.5 ml) at 0 °C to room temperature as described for the methanodibenzo[b,f][1,5]dioxocine derivative **12a** followed by purification on a silica gel column using EtOAc:petroleum ether (8:92) as eluent furnished the methanodibenzo[b,f][1,5]dioxocine derivative **12d** (91.9 mg, 91%).

Physical appearance: Pale yellow liquid.

M.P.: 115-117 ^oC

R_f: 0.5 (2:8 EtOAc:petroleum ether).

¹**H NMR (400 MHz, CDCl₃):** δ 7.39-7.31 (m, 6H), 7.26 (d, *J* = 8.4 Hz, 1H), 7.21 (td, *J* = 1.2, 8.4 Hz, 1H), 6.91 (t, *J* = 7.2 Hz, 1H), 6.82 (d, *J* = 8.0 Hz, 1H), 6.56 (dd, *J* = 2.4, 8.4 Hz, 1H), 6.44 (d, *J* = 2.4 Hz, 1H), 5.32 (d, *J* = 2.8 Hz, 2H), 4.97 (s, 2H), 2.31 (t, *J* = 2.8 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 160.8 (C), 154.3 (C), 153.3 (C), 136.9 (C), 131.7 (CH), 130.9 (CH), 130.7 (CH), 128.7 (2 × CH), 128.1 (CH), 127.6 (2 × CH), 126.5 (C), 120.6 (CH), 117.3 (CH), 114.3 (C), 108.7 (CH), 102.3 (CH), 70.1 (CH₂), 67.8 (CH), 67.4 (CH), 26.8 (CH₂).

HRMS (ESI, M+Na⁺): m/z calcd. for C₂₂H₁₈NaO₃ 353.1148, found 353.1159.

4-methoxy-6H,12H-6,12-methanodibenzo[b,f][1,5]dioxocine (12e):

Salicylaldehyde derivative **7f** (45.6 mg, 0.3 mmol) was reacted with styrene **11a** (55 mg, 0.45 mmol) in presence of TMOF (50 μ L, 0.45 mmol) and (±) CSA (7 mg, 0.03 mmol) in dry CH₂Cl₂ (2.5 ml) at 0 °C to room temperature as described for the methanodibenzo[b,f][1,5]dioxocine derivative **12a** followed by purification on a silica gel column using EtOAc:petroleum ether (8:92) as eluent furnished the methanodibenzo[b,f][1,5]dioxocine derivative **12e** (74.4 mg, 91%).

Physical appearance: Pale yellow solid.

M.P.: 125-127 °C

R_f: 0.5 (2:8 EtOAc:petroleum ether).

IR (neat): 2959, 1610, 1586, 1487, 1463, 1288, 1264, 1219, 1048, 1030, 991, 894, 756 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.44 (dd, *J* = 1.6, 7.6 Hz, 1H), 7.19 (td, *J* = 1.6, 8.8 Hz, 1H), 6.98 (dd, *J* = 1.2, 7.6 Hz, 1H), 6.91-6.75 (m, 4H), 5.50 (d, *J* = 1.6 Hz, 1H), 5.35-5.34 (m, 1H), 3.81 (s, 3H), 2.32 (d, *J* = 2.8 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 153.2 (C), 148.6 (C), 142.7 (C), 131.2 (CH), 130.7 (CH), 122.5 (CH), 122.0 (C), 121.3 (C), 120.7 (CH), 120.4 (CH), 117.1 (CH), 112.1 (CH), 67.9 (CH), 67.4 (CH), 56.0 (CH₃), 26.4 (CH₂).

HRMS (ESI, M+Na⁺): m/z calcd. for C₁₆H₁₄NaO₃ 277.0835, found 277.0833.

6H,12H-6,12-methano[1,3]dioxolo[4',5':4,5]benzo[1,2-b]benzo[f][1,5]dioxocine (12f): Salicylaldehyde derivative 7f (50 mg, 0.3 mmol) was reacted with styrene 11a (55 mg, 0.45 mmol) in presence of TMOF (50 μ L, 0.45 mmol) and (±) CSA (7 mg, 0.03 mmol) in dry CH₂Cl₂ (2.5 ml) at 0 °C to room temperature as described for the methanodibenzo[b,f][1,5]dioxocine derivative 12a followed by purification on a silica gel column using EtOAc:petroleum ether (8:92) as eluent furnished the

methanodibenzo[b,f][1,5]dioxocine derivative 12f (65 mg, 81%).

Physical appearance: White solid.

M.P.: 154-156 °C

R_f: 0.5 (2:8 EtOAc:petroleum ether).

IR (neat): 2914, 1628, 1607, 1480, 1447, 1253, 1213, 1086, 1045, 763 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.33 (dd, *J* = 1.2, 7.6 Hz, 1H), 7.20 (td, *J* = 1.6, 8.4 Hz, 1H), 6.90 (t, *J* = 7.6 Hz, 1H), 6.82 (d, *J* = 8.4 Hz, 1H), 6.77 (s, 1H), 6.32 (s, 1H), 5.87 (s, 1H), 5.80 (s, 1H), 5.27 (s, 1H), 5.22 (s, 1H), 2.27 (t, *J* = 2.8 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 153.2 (C), 149.3 (C), 148.6 (C), 141.8 (C), 130.9 (CH), 130.7 (CH), 121.5 (C), 120.7 (CH), 117.1 (CH), 112.9 (C), 109.0 (CH), 101.2 (CH₂), 98.6 (CH), 67.9 (CH), 67.6 (CH), 26.7 (CH₂).

HRMS (ESI, M+Na⁺): m/z calcd. for C₁₆H₁₂NaO₄ 291.0628, found 291.0620.

1,3-dimethoxy-6H,12H-6,12-methanodibenzo[b,f][1,5]dioxocine (12g):

Salicylaldehyde derivative **7g** (71.4 mg, 0.3 mmol) was reacted with styrene **11a** (67 mg, 0.45 mmol) in presence of TMOF (50 μ L, 0.45 mmol) and (±) CSA (7 mg, 0.03 mmol) in dry CH₂Cl₂ (2.5 ml) at 0 °C to room temperature as described for the methanodibenzo[b,f][1,5]dioxocine derivative **12a** followed by purification on a silica gel column using EtOAc:petroleum ether (8:92) as eluent furnished the methanodibenzo[b,f][1,5]dioxocine derivative **12g** (25.8 mg, 31%).

Physical appearance: Sticky solid.

R_f: 0.5 (2:8 EtOAc:petroleum ether).

IR (neat): 3004, 2960, 2853, 1614, 1593, 1484, 1335, 1304, 1217, 1175, 1145, 1108, 1055, 998, 878, 756 cm⁻¹.

¹**H NMR (500 MHz, CDCl₃):** δ 7.35 (d, *J* = 7.5 Hz, 1H), 7.20 (d, *J* = 7.5 Hz, 1H), 6.92-6.88 (m, 2H), 6.04 (s, 1H), 5.99 (s, 1H), 5.70 (s, 1H), 5.32 (s, 1H), 3.86 (s, 3H), 3.72 (s, 3H), 2.28 (d, *J* = 13.5 Hz, 1H), 2.19 (d, *J* = 13.5 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 161.9 (C), 159.2 (C), 154.9 (C), 153.8 (C), 130.9 (CH), 130.6 (CH), 121.3 (C), 120.4 (CH), 117.4 (CH), 103.5 (C), 93.0 (CH), 91.8 (CH), 67.8 (CH), 62.0 (CH), 56.0 (CH₃), 55.3 (CH₃), 26.6 (CH₂).

HRMS (ESI, M+Na⁺): m/z calcd. for C₁₇H₁₆NaO₄ 307.0941, found 307.0946.

10-methoxy-6H,12H-6,12-methanodibenzo[b,f][1,5]dioxocin-4-ol (12h):

To a magnetically stirred solution of salicylaldehyde **7h** (70 mg, 0.50 mmol) and hydroxystyrene **11b** (114 mg, 0.76 mmol) in dry CH₂Cl₂ (5 ml) was added CH(OMe)₃ (84 μ L, 0.76 mmol) followed by (±) CSA (11.7 mg, 0.050 mmol) at 0 °C. Reaction mixture slowly brought to room temperature and monitored by TLC. After disappearances of intermediate spots on TLC reaction was quenched with saturated aqueous NaHCO₃ solution (4 mL). After stirring for 5 minute extracted with CH₂Cl₂ (3 × 5 mL) and dried over anhydrous Na₂SO₄. Evaporation of the solvent and purification of the residue over a silica gel column using EtOAc-petroleum ether (8:92) as eluent furnished cycloflavan derivative **12h** (105 mg, 76 %). Physical appearance: white solid.

M.P.: 165-167 ⁰C

R_f: 0.3 (8:2 EtOAc:petroleum ether).

IR (neat): 3427, 2960, 1588, 1486, 1336, 1264, 1214, 1078, 1038, 1012, 890, 737 cm⁻¹.

¹**H NMR (500 MHz, CDCl₃):** δ 6.99 (d, *J* = 7.5 Hz, 1H), 6.93 (d, *J* = 7.5 Hz, 1H), 6.85-6.76 (m, 4H), 5.64 (s, 1H), 5.49 (s, 1H), 5.43 (s, 1H), 3.79 (s, 3H), 2.33 (s, 2H).

¹³C NMR (125 MHz, CDCl₃, DEPT): δ 148.6 (C), 144.8 (C), 142.8 (C), 140.4 (C), 122.4 (CH), 121.9 (CH), 121.5 (C), 121.4 (C), 121.0 (CH), 120.4 (CH), 115.6 (CH), 112.2 (CH), 68.0 (CH), 67.4 (CH), 55.0 (CH₃), 26.5 (CH₂).

HRMS (ESI, M+H⁺): m/z calcd. for C₁₆H₁₅O₄ 271.0970, found 271.0969.

2,10-dimethoxy-6H,12H-6,12-methanodibenzo[b,f][1,5]dioxocine (12i):

Salicylaldehyde derivative **7b** (60.8 mg, 0.4 mmol) was reacted with styrene **11b** (90 mg, 0.6 mmol) in presence of TMOF (65 μ L, 0.6 mmol) and (±) CSA (9.3 mg, 0.04 mmol) in dry CH₂Cl₂ (3 ml) at 0 °C to room temperature as described for the methanodibenzo[b,f][1,5]dioxocine derivative **12a** followed by purification on a silica gel column using ethyl acetate-petroleum ether (8:92) as eluent furnished the methanodibenzo[b,f][1,5]dioxocine derivative **12i** (79 mg, 70%).

Physical appearance: White solid.

М.Р.: 130-132 °С

R_f: 0.5 (2:8 EtOAc:petroleum ether).

IR (neat): 2959, 2833, 1587, 1494, 1469, 1283, 1265, 1214, 1081, 1049, 1028, 739 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 6.97-6.95 (m, 2H), 6.85 (t, *J* = 8.0 Hz, 1H), 6.80-6.72 (m, 3H), 5.44 (d, *J* = 1.6 Hz, 1H), 3.82 (s, 3H), 3.74 (s, 3H), 2.30 (t, *J* = 2.8 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 153.5 (C), 148.5 (C), 147.0 (C), 142.7 (C), 122.5 (CH), 122.1 (C), 121.3 (C), 120.4 (CH), 117.9 (CH), 117.8 (CH), 114.5 (CH), 111.9 (CH), 68.2 (CH), 67.2 (CH), 55.9 (CH₃), 55.8 (CH₃), 26.8 (CH₂).

HRMS (ESI, M+Na⁺): m/z calcd. for C₁₇H₁₆NaO₄ 307.0941, found 307.0934.

(6R*,12R*)-3-(benzyloxy)-10-methoxy-6H,12H-6,12-

methanodibenzo[b,f][1,5]dioxocine(12j):

To a magnetically stirred solution of salicylaldehyde 7e (114 mg, 0.49 mmol) and hydroxystyrene derivative 11b (112.5 mg, 0.74 mmol) in dry CH_2Cl_2 (5 ml) was added $CH(OMe)_3$ (82 μ L, 0.74 mmol) followed by (±) CSA (11.6 mg, 0.049 mmol) at 0 °C. Reaction mixture slowly brought to room temperature and monitored by TLC. After disappearances of intermediate spots on TLC reaction was quenched with saturated aqueous NaHCO₃ solution (4 mL). After stirring for 5 minute extracted with CH₂Cl₂ (3 × 5 mL) and dried over anhydrous Na₂SO₄. Evaporation of the solvent and purification of the residue over a silica gel column using EtOAcpetroleum ether (8:92) as eluent furnished cycloflavan derivative **12j** (147 mg, 84 %).

Physical appearance: white solid.

M.P.: 124-126 °C

Rf: 0.3 (8:2: EtOAc:petroleum ether).

IR (neat): 2940, 1616, 1591, 1486, 1466, 1265, 1210, 1146, 1108, 1082, 1002, 755, 741 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 7.37-7.30 (m, 5H), 6.98 (dd, *J* = 7.6, 0.8 Hz, 1H), 6.86 (t, *J* = 8.0 Hz, 1H), 6.78 (dd, *J* = 8.0, 1.2 Hz, 1H), 6.55 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.44 (d, *J* = 2.4 Hz, 1H), 5.47 (d, *J* = 1.2 Hz, 1H), 5.33 (d, *J* = 1.6 Hz, 1H), 4.96 (s, 2H), 3.82 (s, 3H), 2.30 (t, *J* = 2.4 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 160.8 (C), 154.3 (C), 148.6 (C), 142.7 (C), 136.8 (C), 131.9 (CH), 128.7 (CH), 128.1 (CH), 127.6 (CH), 122.5(C), 122.0(CH), 120.3(CH), 114.1 (C), 112.0 (CH), 108.6 (CH), 102.2 (CH), 70.0 (OCH₂), 67.6 (CH), 67.5 (CH), 55.9 (OCH₃), 26.6 (CH₂).

HRMS (ESI, M+Na⁺): m/z calcd. for C₂₃H₂₀NaO₄ 383.1254, found 383.1254.

2,8-dimethoxy-6H,12H-6,12-methanodibenzo[b,f][1,5]dioxocine (12k):

Salicylaldehyde derivative **7b** (46 mg, 0.30 mmol) was reacted with styrene **11c** (55 mg, 0.45 mmol) in presence of TMOF (50 μ L, 0.45 mmol) and (±) CSA (7 mg, 0.03 mmol) in dry CH₂Cl₂ (2.5 ml) at 0 °C to room temperature as described for the methanodibenzo[b,f][1,5]dioxocine derivative **12a** followed by purification on a silica gel column using EtOAc:petroleum ether (8:92) as eluent furnished the methanodibenzo[b,f][1,5]dioxocine derivative **12k** (79.6 mg, 90%).

Physical appearance: White solid.

M.P.: 107-109 °C

R_f: 0.5 (2:8 EtOAc:petroleum ether).

IR (neat): 2959, 2833, 16118, 1494, 1466, 1429, 1284, 1207, 1153, 993, 880, 817, 750 cm⁻¹.

¹**H NMR (400 MHz, CDCl₃):** δ 6.86 (d, *J* = 2.8 Hz, 2H), 6.80-6.72 (m, 4H), 5.24 (t, *J* = 2.8 Hz, 2H), 3.75 (s, 6H), 2.29 (d, *J* = 2.8 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃, DEPT): δ 153.6 (2 × C), 147.0 (2 × C), 121.7 (2 × C), 117.8 (2 × CH), 117.6 (2 × CH), 114.5 (2 × CH), 67.7 (2 × CH), 55.8 (2 × CH₃), 26.8 (CH₂).

HRMS (ESI, M+Na⁺): m/z calcd. for C₁₇H₁₆NaO₄ 307.0941, found 307.0939.

Gram Scale Total Synthesis of Myristinin A-F

1-(2,4,6-trihydroxy-3-((2R,4S*)-7-hydroxy-2-(4-hydroxyphenyl)chroman-4-yl)phenyl)dodecan-1-one* (1/2):²

To a cold (0 °C) magnetically stirred solution of salicylaldehyde 7e (1.0 g, 4.3813 mmol), (±)camphor sulphonic acid (CSA) (50.8 mg, 0.2190 mmol), in dry CH₃CN (8 mL), was added trimethyl orthoformate (727 μ L, 6.5720 mmol) and stirred for 10 min. Then the styrene **8b** (1.38 g, 6.5720 mmol) was added slowly at 0 °C the resulting mixture was stirred at room temperature, and then the phenol 9e (2.026 g, 6.5720 mmol) in dry CH₃CN (2 mL), was slowly added at 0 °C the resulting mixture was stirred for 1h at 0 °C then slowly warmed to room temperature. After completion of the reaction (TLC control), the reaction mixture was carefully quenched with saturated sodium hydrogen carbonate solution (10 mL). The aqueous layer was extracted with diethyl ether (3 x 20 mL), the combined organic layer was washed with brine and dried over anhydrous sodium sulphate. Evaporation of the solvent followed by the addition of dry THF and dry MeOH in 1:1 ratio and 10% Pd(OH)₂/C (420 mg) was added to the crude reaction mixture. Then the reaction mixture was stirred at room temperature in an atmosphere of hydrogen created by evacuative displacement of air by H₂ (balloon, 1 atm). After completion of the reaction the catalyst filtered off through a celite pad. Evaporation and purification of the residue on silica gel column, using Pet. Ether: CH₂Cl₂: MeOH: AcOH (70:25:3:1) as an eluent afforded the required bicyclic product 1 in (337 mg, 14%) and mixture of phenol 9e and 2a/b. and further purification of the mixture on silica gel column, using Pet. Ether: CHCl₃: MeOH: AcOH (70:25:3:1) as an eluent afforded the required bicyclic product **2a/b** in (1.037 g, 43%).

1-(2,4,6-trihydroxy-3-((2R*,4S*)-7-hydroxy-2-(4-hydroxyphenyl)chroman-4yl)phenyl)dodecan-1-one (1):

Physical Appearance: Pale Brown colour foamy solid
R_f: 0.4 (1:4, Petroleum Ether: CH₂Cl₂: MeOH (AcOH))
R_t: 10.4 min (CH₃CN: H₂O) [C18 column, 4ml/min]

IR (neat): 3459, 2952, 2845, 1728, 1620, 1614,1465, 1452, 1386, 1337, 1236, 1160, 1144, 1066, 841, 802, 735 cm⁻¹.

¹H NMR (500 MHz, DMSO-d6): δ 14.30 (br s, 1H), 10.57 (br s, 1H), 10.18 (br s, 1H), 9.32 (s, 1H), 8.99 (s, 1H), 7.08 (d, *J* = 8.7 Hz, 2H), 6.69 (d, J = 8.4 Hz, 2H),

6.35 (d, *J* = 8.4Hz, 1H), 6.22 (d, *J* = 2.1 Hz, 1H), 6.11 (dd, *J* = 8.1, 2.4 Hz, 1H), 5.94 (s, 1H), 5.36 (d, *J* = 4.2 Hz, 1H), 4.15 (dd, *J* = 8.4, 6.3 Hz, 1H), 2.96 (t, *J* = 7.5 Hz, 2H), 2.57 (m, 1H), 2.08 (m, 1H), 1.55 (t, *J* = 6.6 Hz, 2H), 1.23 (bs, 16H), 0.84 (t, *J* = 6.3 Hz, 3H,).

¹³C NMR (125 MHz, DMSO-d6, DEPT): δ205.5 (C), 164.3 (C), 163.0 (C), 160.4 (C), 156.3 (C), 155.9 (C), 154.5 (C), 132.3 (C), 128.0 (C), 126.7 (CH), 116.9 (CH), 115.0 (C), 108.1 (C), 107.5 (CH), 103.5 (C), 102.5 (C), 102.2 (CH), 94.3 (CH), 74.58 (CH), 43.2 (CH₂), 32.1 (CH₂), 31.4 (CH₂), 31.25 (CH), 29.0 (CH₂), 28.8 (CH₂), 25.5 (CH₂), 24.6 (CH₂), 22.2 (CH₂), 14.0 (CH₃).

HRMS (ESI, M+Na⁺): m/z calcd. for C₃₃H₄₀NaO₇ 571.2666, found 571.2663.

1-(2,4,6-trihydroxy-3-((2R*,4R*)-7-hydroxy-2-(4-hydroxyphenyl)chroman-4-

yl)phenyl)dodecan-1-one (2a/b):

Physical Appearance: Pale Brown colour foamy solid

R_f: 0.4 (1:4, Petroleum Ether: CHCl₃: MeOH (AcOH))

R_t: 15.6 min (CH₃CN: H₂O) [C18 column, 4ml/min]

IR (neat): 3445, 2832, 2815, 1714, 1632, 1620, 1455, 1432, 1386, 1327, 1248, 1169, 1104, 1055, 835, 807, 739 cm⁻¹.

¹**H NMR (500 MHz, DMSO-d6):** δ 14.52 (s, 1H), 14.10 (s, 1H), 10.55 (bs, 1H), 10.07 (bs, 1H), 9.39 (s, 1H), 8.97 (s, 1H), 7.24 (dd, J = 9.0, 2.0 Hz, 2H), 6.75 (dd, J = 9.0, 2.0 Hz, 2H), 6.42 (d, J = 9.0 Hz, 1H), 6.08 (s, 1H), 6.15 (m, 2H), 5.91 (s, 1H), 5.00 (dd, J = 11.0, 10.0 Hz,

1H), 4.69 (dd, *J* = 11.5, 5.5 Hz, 1H), 4.60 (dd, *J* = 12.0, 5.5 Hz, 1H), 3.01 (t, *J* = 8.0 Hz, 1H), 2.96 (m, 1H), 2.81 (q, *J* = 12.5 Hz, 1H), 2.58 (q, *J* = 12.5 Hz, 1H, 1H), 1.67 (m, 2H), 1.89 (m, 1H), 1.33 (m, 16H), 0.82 (t, *J* = 5.8 Hz, 3H).

¹³C NMR (125 MHz, DMSO-d6, DEPT): δ205.7 (C), 163.8 (C), 162.0 (C), 160.2 (C), 158.0 (C), 155.4 (C), 155.3 (C), 135.3 (C), 128.5 (C), 127.8 (CH), 117.2 (CH), 114.9 (C), 114.9 (C), 106.4 (CH), 104.1 (C), 102.4 (C), 102.2 (CH), 94.3 (CH), 67.9 (CH), 43.1 (CH₂), 35.8 (CH₂), 33.64 (CH₂), 31.25 (CH), 28.97 (CH₂), 28.97 (CH₂), 28.95 (CH₂), 28.9 (CH₂), 28.87 (CH₂), 28.65 (CH₂), 24.45 (CH₂), 22.04 (CH₂), 13.89 (CH₃).

HRMS (ESI, M+Na⁺): m/z calcd. for C₃₃H₄₀NaO₇ 571.2666, found 571.2665.

Reported ^a	Synthesized	Reported ^a	Synthesized
14.23 (br s, 1H)	14.30 (br s, 1H)	6.12 (dd, <i>J</i> = 8.3, 2.1 Hz, 1H)	6.11 (dd, <i>J</i> = 8.1, 2.4 Hz, 1H)
10.57 (br s, 1H)	-	5.97 (s, 1H)	5.94 (s, 1H)
10.18 (br s, 1H)	-	5.38 (dd, <i>J</i> = 4.3, 3.9 Hz, 1H)	5.36 (d, J = 4.2Hz, 1H)
9.32 (br s, 1H)	9.32 (s, 3H)	4.17 (dd, <i>J</i> = 8.0, 7.0 Hz, 1H)	4.15 (dd, <i>J</i> = 8.4, 6.3 Hz, 1H)
9.00 (br s, 1H)	8.99 (s, 1H)	2.97 (t, $J = 7.3$ Hz, 2H)	2.96 (t, $J = 7.5$ Hz, 2H)
7.10 (br d, $J = 8.4$ Hz,	7.08 (d, $J = 8.7$ Hz,	2.07, (m, 1H)	2.57 (m, 1H), 2.08 (m,
2H)	2H)	2.59, (m, 1H)	1H)
6.71 (br d, <i>J</i> = 8.4 Hz, 2H)	6.69 (d, <i>J</i> = 8.4 Hz, 2H)	1.56 (m, 2H)	1.55 (t, $J = 6.6$ Hz, 2H)
6.38 (d, <i>J</i> = 8.4 Hz, 1H)	6.35 (d, $J = 8.4$ Hz, 1H)	1.25 (m, 18H)	1.23 (br s, 16H)
6.24 (d, <i>J</i> = 2.2Hz, 1H)	6.22 (d, J = 2.1 Hz, 1H)	0.84 (t, <i>J</i> = 6.5 Hz, 3H)	0.84 (t, J = 6.3 Hz, 3H)

Comparison of ¹H NMR spectral data of myristinin-A (1) in DMSO-d₆

) ··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·	
Position #	Reported ^a	Synthesized	Position #	Reported ^a	Synthesized
2	74.6	74.63	8'	43.2	43.24
3	32.1	32.18	9'	24.6	24.62
4	25.2	25.57	10'	28.7	28.78
4a	116.8	116.91	11'	28.7	28.03
5	127.9	127.98	12'	29	29.08
6	107.5	107.59	13'	29	29.1
7	155.9	155.99	14'	29	29.1
8	102.5	102.58	15'	29	29.02
8a	154.6	154.61	16'	31.3	31.37
1'	103.5	103.58	17'	22.1	22.17
2'	164.3	164.41	18'	13.9	14.02
3'	108.1	108.2	1"	132.3	132.35
4'	163	163.01	2", 6"	126.7	126.71
5'	94.5	95.03	3", 5"	115	115.1
6'	160.4	160.43	4"	156.3	156.35
7'	205.5	205.56			

Comparison of ¹³C NMR spectral data of myristinin-A (1) in DMSO-d₆

^{*a*}isolated values J. Org. Chem, **2002**, 67, 5470.

Comparison of ¹H NMR spectral data of myristinin-B/C (2a/b) in DMSO-d₆

Reported ^a	Synthesized
14.52 (br s, 1H)	14.52 (s, 1H)
14.10 (br s, 1H)	14.10 (s, 1H
10.57 (br s, 1H)	10.55 (br s, 1H)
10.07 (br s, 1H)	10.07 (br s, 1H)
9.42 (br s, 1H)	9.39 (s, 1H)
9.00 (br s, 1H)	8.97 (s, 1H)
7.24 (br d, $J = 7.8$ Hz, 2H)	7.24 (dd, $J = 9.0$ and 2.0 Hz, 2H)
6.76 (br d, <i>J</i> = 8.4, 2H)	6.75 (dd, $J = 9.0$ and 2.0 Hz, 2H)
6.42 (d, $J = 8.7$ Hz, 1H)	6.42 (d, J = 9.0 Hz, 1H)
6.15 (m, 1H)	6.08 (s, 1H)
6.09 (s, 1H)	6.15 (m, 2H)
5.92 (s, 1H)	5.91 (s, 1H)
5.00 (dd, $J = 11.4$, 7.0 Hz, 1H)	5.00 (dd, $J = 11.0$ and 10.0 Hz, 1H)
4.69 (dd, <i>J</i> = 11.9, 5.8 Hz, 1H)	4.69 (dd, <i>J</i> = 11.5 and 5.5 Hz, 1H)
4.62 (dd, <i>J</i> = 11.9 5.8 Hz, 1H)	4.60 (dd, <i>J</i> = 12.0 and 5.5 Hz, 1H)
3.05 (t, J = 8.3 Hz, 2H)	3.01 (t, <i>J</i> = 8.0 Hz, 2H)
2.97 (m, 2H)	2.96 (m, 2H)
2.61 (ddd, <i>J</i> = 12.4, 11.9, 11.4Hz, 1H)	2.81 (q, <i>J</i> = 12.5 Hz, 1H)
2.71 (ddd. <i>J</i> = 12.4, 11.9, 11.4 Hz, 1H)	2.58 (q, <i>J</i> = 12.5 Hz, 1H)
1.79 (m, 2H),	1.81 (m, 2H)
1.60 (m, 1H)	1.67 (m, 2H)
1.54 (m, 1H)	1.89 (m, 1H)
1.23 (m, 16H)	1.33 (m, 16H)
0.84 (t, 5.8Hz, 3H)	0.82 (t, J = 5.8 Hz, 3H)

Position #	Reported ^a	Synthesized	Position #	Reported ^a	Synthesized
2	78	73.95	8'	43.2	43.18
3	34	34.5	9'	24.5	24.47
4	30.4	30.3	10'	28.7	28.61
4a	117	117	11'	28.9	28.74
5	127.6	127.66	12'	28.9	28.93
6	107.8	105.38	13'	29	28.99
7	155.7	155.06	14'	29	29.04
8	102.7	102.68	15'	29	29.04
8a	155.6	156.48	16'	31.3	31.33
1'	103.2	104.34	17'	22.1	22.13
2'	164.1	161.86	18'	13.9	13.98
3'	107.6	107.7	1"	132.1	130.65
4'	163.1	163.72	2", 6"	127.4	127.55
5'	95.1	94.24	3", 5"	115	115.16
6'	160.6	160.24	4"	156.9	157.35
7'	205.5	205.78			

Comparison of ¹³C NMR spectral data of myristinin-B/C (2a/b) in DMSO-d₆

^aisolated values J. Org. Chem, 2002, 67, 5470.

9-phenyl-1-(2,4,6-trihydroxy-3-((2R*,4S*)-7-hydroxy-2-(4-hydroxyphenyl)chroman-4yl)phenyl)nonan-1-one(3/4):

To a cold (0 °C) magnetically stirred solution of salicylaldehyde 7e (1.0 g, 4.3813 mmol), (\pm)camphor sulphonic acid (CSA) (50.8 mg, 0.2190 mmol), in dry CH₃CN (8 mL), was added trimethyl orthoformate (727 μ L, 6.5720 mmol) and stirred for 10 min. Then the styrene **8b** (1.38 g, 6.5720 mmol) was added slowly at 0 °C the resulting mixture was stirred at room temperature, and then the phenol **9f** (2.25 g, 6.5720 mmol) in dry CH₃CN (2 mL), was slowly added at 0 °C the resulting mixture was stirred for 1h at 0 °C then slowly warmed to room temperature. After completion of the reaction (TLC control), the reaction mixture was carefully quenched with saturated sodium hydrogen carbonate solution (10 mL). The aqueous layer was extracted with diethyl ether (3 x 20 mL), the combined organic layer was washed with brine and dried over anhydrous sodium sulphate. Evaporation of the solvent followed by the addition of dry THF and dry MeOH in 1:1 ratio and 10% Pd(OH)₂/C (420 mg) was added to the crude reaction mixture. Then the reaction mixture was stirred at room temperature in an atmosphere of hydrogen created by evacuative displacement of air by H₂ (balloon, 1 atm). After completion of the reaction the catalyst filtered off through a celite pad. Evaporation and purification of the residue on silica gel column, using Pet. Ether: CH₂Cl₂: MeOH: AcOH (70:25:3:1) as an eluent afforded the required bicyclic product **3** in (230 mg, 9%) and mixture of phenol **9f** and **4a/b**. and further purification of the mixture on silica gel column, using Pet. Ether: CHCl₃: MeOH: AcOH (70:25:3:1) as an eluent afforded the required bicyclic product **4a/b** in (897 mg, 35%).

1-(2,4,6-trihydroxy-3-((2R*,4S*)-7-hydroxy-2-(4-hydroxyphenyl)chroman-4-

yl)phenyl)dodecan-1-one (3):

Physical Appearance: Pale Brown colour foamy solid

R_f: 0.3 (Petroleum Ether: CH₂Cl₂: MeOH: AcOH [70:25:3:1])

R_t: 48.4 min (MeOH: H₂O) [C18 column, 4ml/min]

IR (neat): 3409, 2931, 2835, 1708, 1639,

1454, 1439, 1375, 1335, 1258, 1169, 1104, 1055, 817, 719 cm⁻¹.

13'

16'

0

OH

¹**H NMR (500 MHz, DMSO-d6):** δ 14.30 (bs, 1H), 10.57 (bs, 1H), 10.18 (bs, 1H), 9.32 (s, 1H), 8.99 (s, 1H), 7.08 (d, J = 8.7 Hz, 2H), 6.69 (d, J = 8.4 Hz, 2H), 6.35 (d, J = 8.4 Hz, 1H), 6.22 (d, J = 2.1 Hz, 1H), 6.11 (dd, J = 8.1, 2.4 Hz, 1H), 5.94 (s, 1H), 5.36 (t, J = 4.2 Hz, 1H), 4.15 (dd, J = 8.4, 6.3 Hz, 1H), 2.96 (t, J = 7.5 Hz, 2H), 2.57 (m, 1H), 2.08 (m, 2H), 1.55 (bs, J = 6.6 Hz, 4H) and 1.23 (s, 8H).

¹³C NMR (125 MHz, DMSO-d6, DEPT): δ205.5 (C), 164.3 (C), 162.9 (C), 160.3 (C), 155.9 (C), 156.3 (C), 154.5 (C), 142.3 (C), 132.3 (C), 128.2 (4 x CH), 128.1 (CH), 126.6 (2 x CH), 125.5 (CH), 116.8 (C), 115.0 (2 x CH), 108.2 (C), 107.5 (CH), 103.5 (C), 102.5 (CH), 94.6 (CH), 74.5 (CH), 43.1 (CH₂), 35.1 (CH₂), 32.2 (CH₂), 30.9 (CH₂), 28.8 (CH₂), 28.7 (CH₂), 28.6 (CH₂), 25.5 (CH), 24.5 (CH₂).

HRMS (ESI, M+Na⁺): m/z calcd. for C₃₆H₃₈NaO₇ 605.2510, found 605.2514.

1-(2,4,6-trihydroxy-3-((2R*,4R*)-7-hydroxy-2-(4-hydroxyphenyl)chroman-4-

yl)phenyl)dodecan-1-one (4a/b):

Physical Appearance: Pale Brown colour foamy solid

R_f: 0.5 (Petroleum Ether: CHCl₃: MeOH: AcOH [70:25:3:1])

Rt: 53.3 min (MeOH: H2O) [C18 column, 4ml/min]

IR (neat): 3429, 2931, 2845, 1704, 1629, 1465, 1442, 1386, 1337, 1249, 1159, 1124, 1061, 807, 729 cm⁻¹.

¹H NMR (500 MHz, DMSO-d6): δ 14.52 (s, 1H), 14.10 (s, 1H), 10.55 (br s, 1H), 10.07 (br s, 1H), 9.39 (s, 1H), 8.97 (s, 1H), 7.24 (dd, *J* = 9.0, 2.0 Hz, 2H), 6.75 (dd, *J* = 9.0, 2.0 Hz, 2H), 6.42 (d, *J* = 9.0 Hz, 1H), 6.08 (s, 1H), 6.15 (s, 1H), 5.91 (s, 1H), 5.00 (dd, *J* = 11.0, 10.0 Hz, 1H), 4.69 (dd, *J* = 11.5, 5.5 Hz, 1H), 4.60 (dd, *J* = 12.0, 5.5 Hz, 1H), 3.01 (t, *J* = 8.0 Hz, 1H), 2.96 (m, 1H), 2.81 (q, *J* = 12.5 Hz, 1H), 2.58 (q, *J* = 12.3 Hz, 1H), 1.89 (m, 2H), 1.67 (bs, 4H), 1.33 (bs, 8H).

¹³C NMR (125 MHz, DMSO-d6, DEPT): δ205.6 (C), 164.6 (C), 163.02 (C), 160.6 (C), 156.9 (C), 155.8 (C), 155.7 (C), 142.3 (C), 132.1 (C), 128.3 (CH), 128.2 (CH), 127.6 (CH), 127.4 (CH), 125.6 (CH), 117.1 (C), 115.1 (CH), 107.8 (CH), 107.6 (C), 104.1 (C), 102.7 (CH), 95.1 (CH), 78.1 (CH), 43.2 (CH₂), 35.1 (CH₂), 34.0 (CH₂), 31.0 (CH₂), 30.9 (CH), 28.9 (CH₂), 28.7 (CH₂), 28.6 (CH₂), 24.6 (CH₂).

HRMS (ESI, M+Na⁺): m/z calcd. for C₃₆H₃₈NaO₇ 605.2510, found 605.2512.

Reported ^a	Synthesized
14.33 (br s, 1H)	14.30 (br s, 1H)
10.61 (br s, 1H)	10.57 (br s, 1H)
10.23 (br s, 1H)	10.18 (br s, 1H)
9.36 (br s, 1H)	9.32 (s, 1H)
9.04 (br s, 1H)	8.99 (s, 1H)
7.25-7.18 (m, 5H)	7.25-7.15 (m, 5H)
7.09 (br d, <i>J</i> = 8.4 Hz, 2H)	7.08 (d, <i>J</i> = 8.7 Hz, 2H)
6.71 (br d, 8.4, 2H)	6.69 (d, <i>J</i> = 8.4 Hz, 2H)
6.38 (d, <i>J</i> = 8.4 Hz, 1H)	6.35 (d, <i>J</i> = 8.4Hz, 1H)
6.25 (d, <i>J</i> = 2.3Hz, 1H)	6.22 (d, $J = 2.1$ Hz, 1H)
6.12 (dd, <i>J</i> = 8.4, 2.2Hz, 1H)	6.11 (dd, $J = 8.1$ and 2.4 Hz, 1H)
5.97 (s, 1H)	5.94 (s, 1H)
5.38 (dd, <i>J</i> = 4.3, 4.1 Hz, 1H)	5.36 (t, $J = 4.2$ Hz, 1H)
4.17 (dd, <i>J</i> = 8.0, 7.0 Hz, 1H)	4.15 (dd, <i>J</i> = 8.4, 6.3 Hz, 1H)
2.97 (t, <i>J</i> = 7.3 Hz, 2H)	2.96 (t, <i>J</i> = 7.5 Hz, 2H)
2.04 (m, 1H)	2.05 (m, 1H)
2.59 (m, 1H)	2.57 (m, 1H)
1.54 (m, 2H)	1.54 (m, 2H)
1.26 (m, 9H)	1.23 (s, 8H).

Comparison of ¹H NMR spectral data of myristinin-D (3)in DMSO-d₆

Comparison of ¹³C NMR spectral data of myristinin-D (3) in DMSO-d₆

Reported ^a	Synthesized	Reported ^a	Synthesized
205.5	205.47	115.1	115.01
164.4	164.29	115.1	115.01
163	162.92	108.2	108.16
160.4	160.32	107.6	107.5
156.3	155.9	103.6	103.5
156	156.27	102.6	102.49
154.6	154.54	94.6	94.57
142.4	142.3	74.6	74.54
132.3	132.27	43.2	43.11
128.3	128.22	35.2	35.12
128.3	128.22	32.2	32.16
128.3	128.22	31	30.93
128.3	128.22	28.9	28.85
128	128.17	28.9	28.85
126.7	126.62	28.8	28.74
126.7	126.62	28.7	28.58
125.6	125.53	25.6	25.52
116.9	116.82	24.6	24.52

^aisolated values J. Org. Chem, 2002, 67, 5470.

Reported ^a	Synthesized	Reported ^a	Synthesized	
14.58 (br s 1H)	14.52 (g. 1H)	6.16-6.19 (br d, <i>J</i> =	6.16.6.10 (br s. 1H)	
14.58 (01 8, 111)	14.52 (8, 111)	8.1 Hz, 1H)	0.10-0.19 (01 8, 111)	
14.17 (br s, 1H)	14.10 (s, 1H)	6.13 (s, 1H)	6.15 (s, 1H)	
10.65 (br s, 1H)	-	5.96 (s, 1H)	5.91 (s, 1H)	
10.63 (br s. 1H)		5.02 (dd, $J = 11.3$,	5.00 (dd, $J = 11.0$ and	
10.05 (01 8, 111)	-	7.0 Hz, 1H)	10.0 Hz, 1H)	
10.56 (br s. 1H)	10.55 (br s. 3H)	4.74 (dd, $J = 11.7$,	4.69 (dd $J = 11.5$ and	
10.50 (01 s, 111)	10.55 (01 8, 511)	5.8 Hz, 1H)	5.5 Hz, 1H,)	
10.11 (br.a. 111)	10.07 (br. c. 111)	4.67 (dd, $J = 11.7$,	4.60 (dd, $J = 12.0$ and	
10.11 (br s, 1H)	10.07 (br s, 1H)	5.8 Hz, 1H)	5.5 Hz, 1H)	
0.46 (hr $a_{\rm III}$)	0.20 (~ 111)	3.03 (t, $J = 7.2$ Hz,	2.01(t, I = 2.0 Hz, 2 Hz)	
9.40 (br s, 1H)	9.39 (8, 11)	2H)	5.01 (i, J = 8.0 Hz, 2H)	
0.06 (hr $a_{\rm III}$)	8.97 (s, 1H)	2.76 (ddd, $J = 12.2$,	2.82 (ddd, $J = 12.3$,	
9.00 (01 8, 11)		11.7, 11.3 Hz, 1H)	11.5, 11.7 Hz, 1H)	
7.24 (m. 2H)	7.27 (m, 2H)	2.65 (ddd, $J = 12.2$,	2.81 (q, $J = 12.5$ Hz,	
7.24 (III, 2H)		11.7, 11.3 Hz, 1H)	1H)	
7.24 (br d, $J = 8.4$	7.24 (dd, <i>J</i> = 9.0	2.50 (t, $J = 7.7$ Hz,	2.58 (q, J = 12.3 Hz,	
Hz, 2H)	and 2.0 Hz, 2H)	1H)	1H)	
7.12 (m, 3H)		1.82 (m, 2H)	1.89 (m, 2H)	
6.79 (br d, $J = 8.4$	6.75 (dd, <i>J</i> = 9.0	1 (0 (111)	1 (2 (- 111)	
Hz, 2H) and 2.0 Hz, 2		1.60 (m, 1H)	1.63 (m, 1H)	
6.47 (d, $J = 8.1$ Hz,	6.42 (d, $J = 9.0$	1.52 (m. 111)	1.67 (ba. 411)	
1H)	Hz, 1H)	1.32 (m, 1H)	1.07 (DS, 4H)	
6.19 (br s, 1H)	6.08 (s, 1H)	1.25 (m, 4H)	1.33 (bs, 8H).	

Comparison of ¹H NMR spectral data of myristinin-E/F (4a/b) in DMSO-d₆

Reported ^a	Synthesized	Reported ^a	Synthesized
205.691	205.61	107.737	107.58
205.605	205.53	107.429	107.31
164.803	164.61	104.173	104.06
164.34	164.14	103.374	103.25
163.226	163.17	102.828	102.7
162.901	162.81	102.785	102.67
160.716	160.6	95.177	95.13
160.518	160.32	93.98	93.93
157.049	156.94	78.294	78.14
155.877	155.79	78.18	78.05
155.702	155.75	43.335	43.16
155.652	155.57	35.292	35.15
142.423	142.34	34.17	34.03
132.26	132.15	33.718	33.59
128.319	128.26	31.115	30.96
128.268	128.21	30.997	30.86
127.794	127.62	30.558	30.44
127.651	127.53	29.064	28.9
127.565	127.44	29.029	28.76
125.628	125.57	28.926	28.72
117.215	117.06	28.881	28.61
117.144	117.01	24.7	24.56
115.16	115.06	24.6	24.52
107.937	107.82		

Comparison of ¹³C NMR spectral data of myristinin-E/F (4a/b) in DMSO-d₆

^{*a*}isolated values J. Org. Chem, **2002**, 67, 5470.

Total Synthesis of (±)-3'-hydroxy-5,7-dimethoxy-4-O-2'-cycloflavan (5)

2-((2S*,4S*)-8-hydroxy-4-methoxychroman-2-yl)-3,5-dimethoxyphenyl benzoate (13):

To a magnetically stirred solution of salicylaldehyde **7i** (70 mg, 0.50 mmol) and styrene derivative **11d** (216 mg, 0.76 mmol) in dry CH₂Cl₂ (7 ml) was added trimethyl orthoformate (84 μ L, 0.76 mmol) followed by (±) CSA (11.7 mg, 0.050 mmol) at 0 °C. Reaction mixture slowly brought to room temperature and monitored by TLC. After disappearances of intermediate spots on TLC reaction was quenched with saturated aqueous NaHCO₃ solution (4 ml). After stirring for 5 minute extracted with CH₂Cl₂ (3 × 5 mL) and dried over anhydrous Na₂SO₄. Evaporation of the solvent and purification of the residue over a silica gel column using EtOAc:petroleum ether (8:92) as eluent furnished flavan derivative **13** (141 mg, 64 %).

Physical appearance: sticky solid.

R_f: 0.5 (1:9 EtOAc:petroleum ether).

¹H NMR (500 MHz, CDCl₃): δ 8.07-8.02 (m, 2H), 7.49 (t, *J* = 7.5 Hz, 1H), 7.35-7.32 (m, 2H), 6.65-6.63 (m, 3H), 6.47 (s, 1H), 6.39 (s, 1H), 5.84 (d, *J* = 12.5 Hz, 1H), 5.57 (s, 1H), 4.24 (s,

1H), 3.84 (s, 6H), 3.36 (s, 3H), 2.54 (t, *J* = 14.5 Hz, 1H), 2.26 (d, *J* = 14.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃, DEPT): δ 166.0 (C), 160.9 (C), 159.3 (C), 151.5 (C), 144.9 (C), 142.3 (C), 133.6 (CH), 130.1 (2 x CH), 128.9 (C), 128.5 (2 x CH), 121.4 (CH), 120.7 (C),

119.6 (CH), 114.4 (CH), 100.7 (CH), 97.3 (CH), 72.5 (CH), 66.8 (CH), 56.1 (CH₃), 55.8 (CH₃), 55.6 (CH₃), 31.3 (CH₂).

HRMS (ESI, M+Na⁺): m/z calcd. for C₂₅H₂₄NaO₇ 459.1414, found 459.1410

(6R*,12R*)-7,9-dimethoxy-6H,12H-6,12-methanodibenzo[b,f][1,5]dioxocin-4-ol (5):

The compound **13** (140 mg, 0.32 mmol) was subjected to de-benzoylation under 3N NaOH (6 ml) under room temperature in MeOH solvent (3 mL) and monitored by TLC. After completion of the starting material the reaction mixture was cooled to 0 °C the pH was adjusted to 3 by adding HCl. After stirring for 5 minute extracted with CH_2Cl_2 (3 × 5 mL) and dried over anhydrous Na₂SO₄. Evaporation of the solvent and the crude mixture was treated with (±) CSA (5.2 mg, 0.022 mmol) at 0 °C. Reaction mixture slowly brought to room temperature and monitored by TLC. After disappearances of starting material on TLC reaction was quenched with saturated aqueous NaHCO₃ solution (4 ml). After stirring for 5 minute extracted with CH_2Cl_2 (3 × 5 mL) and dried over anhydrous Na₂SO₄. Evaporation of the solvent and the crude mixture by TLC reaction was quenched with saturated aqueous NaHCO₃ solution (4 ml). After stirring for 5 minute extracted with CH_2Cl_2 (3 × 5 mL) and dried over anhydrous Na₂SO₄. Evaporation of the solvent and purification of the residue over a silica gel column using EtOAc:petroleum ether (25:75) as eluent furnished cycloflavan derivative (**5**) (54 mg, 56 % over 2 steps).

Physical appearance: brown solid.

M.P.: 147-149 °C

R_f: 0.3 (2:8 EtOAc:petroleum ether).

IR (neat): 3466, 2929, 2846, 1617, 1592, 1477, 1273, 1220, 1145, 1108, 1040, 986, 944, 911, 817, 795, 760, 740 cm⁻¹.

¹**H NMR (400 MHz, DMSO-d₆):** δ 6.80 (dd, *J* = 1.5, 7.2 Hz, 1H), 6.70 (d, *J* = 1.6 Hz, 1H), 6.68 (d, *J* = 7.4, 1H), 6.11 (d, *J* = 2.3 Hz, 1H), 5.97 (d, *J* = 2.3 Hz, 1H), 5.62 (br s, 1H), 5.34 (br s, 1H), 3.80 (s, 3H), 3.67 (s, 3H), 2.16 (dt, *J* = 2.5, 14.0 Hz, 1H), 2.08 (dt, *J* = 2.5, 14.0 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d₆, DEPT): δ 161.9 (C), 159.3 (C), 155.0 (C), 146.1 (C), 142.2 (C), 122.5 (C), 121.4 (CH), 120.1 (CH), 116.5 (CH), 103.5 (C), 93.4 (CH), 91.8 (CH)67.2 (CH), 61.5 (CH), 56.1 (OCH₃), 55.6 (OCH₃), 26.5 (CH₂).

HRMS (ESI, M+Na⁺): m/z calcd. for C₁₇H₁₆NaO₅ 323.0895, found 323.089

¹H and ¹³C NMR spectra of cycloflavans

¹H and ¹³C NMR spectra of total synthesis of myristinin A-F

¹³C NMR spectrum of myristinin D (3) (125MHz, DMSO-D6)

S57

X-Ray crystallographic analysis and data

Identification code		10a	
Solvent		Pet. Ether:Ethylacetate	
CCDC		2097416	
Bond precision:	C-C = 0.0019 A	Wavelength= 0.71073	
Cell:	a= 14.3203(6) alpha= 90	b=11.9892(12) beta=97.938(6)	c= 11.4344(17) gamma= 90
Temperature:	150 K		
	Calculated	Reported	
Volume	1944.4(4)	1944.3(4)	
Space group	P 21/c	P 1 21/c 1	
Hall group	-P 2ybc	-P 2ybc	
Moiety formula	C24 H24 O4	0.5(C24 H24 O4)	
Sum formula	C24 H24 O4	C12 H12 O2	
Mr	376.43	188.22	
Dx, g cm-3	1.286	1.286	
Ζ	4	8	
Mu (mm-1)	0.087	0.087	
F000	800.0	800.0	
F000'	800.40		
h,k,l max	17,14,13	17,13,13	
Nref	3426	3342	
Tmin,Tmax	0.983,0.994	0.826,1.000	
Tmin'	0.981		
Correction method=	NUMERICAL		
Data completeness =	0.975	Theta(max)= 24.993	
R(reflections) =	0.0382(2973)	wR2(reflections)= 0.0993(3342)	
S = 1.040	Npar = 256		

Crystal data and structure refinement for cassiaflavan 10a

Identification code		10b	
Solvent		Pet. Ether:Benzene	
CCDC		2097417	
Bond precision:	C-C = 0.0053 A	Wavelength= 0.71073	
Cell:	a= 9.1365(7) alpha= 101.064(6)	b= 10.0584(7) beta= 106.529(6)	c= 13.1688(9) gamma=104.988(6)
Temperature:	150 K		
	Calculated	Reported	
Volume	1073.68(15)	1073.67(14)	
Space group	P -1	P -1	
Hall group	-P 1	-P 1	
Moiety formula	C25 H26 O5	0.4(C25 H26 O5)	
Sum formula	C25 H26 O5	C10 H10.40 O2	
Mr	406.46	162.58	
Dx, g cm-3	1.257	1.257	
Ζ	2	5	
Mu (mm-1)	0.087	0.087	
F000	432.0	432.0	
F000'	432.22		
h,k,l max	10,11,15	10,11,15	
Nref	3780	3720	
Tmin,Tmax	0.986,0.995	0.778,1.000	
Tmin'	0.982		
Correction method=	NUMERICAL		
Data completeness =	0.984	Theta(max)= 24.996	
R(reflections) =	0.0743(2308)	wR2(reflections)= 0.2269(3720)	
S = 1.053	Npar = 275		

Crystal data and structure refinement for doubly linked flavan 10b

	10c	
	Pet. Ether:Ethylacetate	
	2097419	
C-C = 0.0038 A	Wavelength= 0.71073	
a=9.1036 (4) alpha= 101.354(3)	b=9.9813 (4) beta= 107.907 (4)	c= 14.0392 (6) gamma=101.361(3)
150 K		
Calculated	Reported	
1143.89 (9)	1143.89 (8)	
P -1	P -1	
-P 1	-P 1	
C25 H23 Br O6	C25 H23 Br O6	
C25 H23 Br O6	C25 H23 Br O6	
499.33	500.35	
1.450	1.453	
2	2	
1.835	1.835	
512.0	514.0	
511.67		
10,11,16	10,11,16	
4026	3932	
0.785, 0.863	0.445, 1.000	
0.719		
NUMERICAL		
0.977	Theta(max)= 24.996	
0.0344 (3430)	wR2(reflections)= 0.0817 (3932)	
Npar = 292		
	C-C = 0.0038 A a=9.1036 (4) alpha= 101.354(3) 150 K Calculated 1143.89 (9) P -1 -P 1 C25 H23 Br O6 C25 H23 Br O6 2 1.835 512.0 511.67 10,11,16 4026 0.785, 0.863 0.719 NUMERICAL 0.977 0.0344 (3430)	10c Pet. Ether:Ethylacetate 2097419 C-C = 0.0038 A Wavelength= 0.71073 a=9.1036 (4) b=9.9813 (4) alpha= b=9.9813 (4) lota b=9.9813 (4) beta= 107.907 (4) bteta= 107.907 (4) 101.354(3) Ital.889 (8) P.1 Ported 1143.89 (9) 1143.89 (8) P-1 P 1 -P 1 P 1 C25 H23 Br O6 C25 H23 Br O6 C25 H23 Br O6 C25 H23 Br O6 C25 H23 Br O6 C25 H23 Br O6 499.33 500.35 1.450 1.453 2 2 1.835 1.835 512.0 514.0 511.67 Inj11,16 10,11,16 3932 0.785, 0.863 0.445, 1.000 0.719 Intea(max)= 24.996 NUMERICAL (3932) 0.9344 (3430) wR2(reflections)= 0.0817 (3932)

Crystal data and structure refinement for cassiaflavan 10c

Identification code		10d	
Solvent		Pet. Ether:Diethyl Ether	
CCDC		2097418	
Bond precision:	C-C = 0.0030 A	Wavelength= 0.71073	
Cell:	a= 8.0204(4) alpha= 83.198(4)	b= 9.7166(5) beta= 89.949(4)	c= 16.0604(8) gamma=82.176(4)
Temperature:	150 K		
	Calculated	Reported	
Volume	1231.08(11)	1231.08(11)	
Space group	P -1	P -1	
Hall group	-P 1	-P 1	
Moiety formula	C31 H30 O5	C31 H30 O5	
Sum formula	C31 H30 O5	C31 H30 O5	
Mr	482.55	482.55	
Dx, g cm-3	1.302	1.302	
Ζ	2	2	
Mu (mm-1)	0.087	0.087	
F000	512.0	512.0	
F000'	512.25		
h,k,l max	9,11,18	9,11,18	
Nref	4099	3939	
Tmin,Tmax	0.988,0.993	0.855, 1.000	
Tmin'	0.986		
Correction method=	NUMERICAL		
Data completeness =	0.961	Theta(max)= 24.500	
R(reflections) =	0.0485(3309)	wR2(reflections)= 0.1277(3939)	
S = 1.034	Npar = 328		

Crystal data and structure refinement for cassiaflavan 10d

Crystal data and structure refinement for cassiaflavan 12b

Identification code		12b	
Solvent		CH_2Cl_2	
CCDC		2097420	
Bond precision:	C-C = 0.0028 A	Wavelength= 1.54184	
Cell:	a= 7.7629(2) alpha= 90	b=17.0020(5) beta=90	c= 17.7065(6) gamma= 90
Temperature:	150 K		
	Calculated	Reported	
Volume	2336.99(12)	2336.99(12)	
Space group	Pbca	Pbca	
Hall group	-P 2ac 2ab	-P 2ac 2ab	
Moiety formula	C16 H14 O2	C16 H14 O2	
Sum formula	C16 H14 O2	C16 H14 O2	
Mr	238.27	238.27	
Dx, g cm-3	1.354	1.354	
Ζ	8	8	
Mu (mm-1)	0.704	0.704	
F000	1008.0	1008.0	
F000'	1010.99		
h,k,l max	9,21,21	9,20,21	
Nref	2332	2277	
Tmin,Tmax	0.915,0.945	0.308,1.000	
Tmin'	0.869		
Correction method=	NUMERICAL		
Data completeness =	0.976	Theta(max)= 72.985	
R(reflections) =	0.0520(1834)	wR2(reflections)= 0.1493(2277)	
S = 1.066	Npar = 164		

Crystal data and structure refinement for cassiaflavan 12f

Identification code		12f	
Solvent		CH ₂ Cl ₂	
CCDC		2097421	
Bond precision:	C-C = 0.0047 A	Wavelength= 1.54184	
Cell:	a=20.0353(7) alpha= 90	b=7.8785(2) beta= 97.267(4)	c=31.1858(12) gamma= 90
Temperature:	150 K		
	Calculated	Reported	
Volume	4883.1(3)	4883.1(3)	
Space group	C 2/c	C 1 2/c 1	
Hall group	-C 2yc	-C 2yc	
Moiety formula	C16 H12 O4	2(C16 H12 O4)	
Sum formula	C16 H12 O4	C32 H24 O8	
Mr	268.26	536.51	
Dx, g cm-3	1.460	1.460	
Ζ	16	8	
Mu (mm-1)	0.872	0.872	
F000	2240.0	2240.0	
F000'	2247.53		
h,k,l max	24,9,38	24,9,38	
Nref	4908	4792	
Tmin,Tmax	0.893,0.957	0.617,1.000	
Tmin'	0.877		
Correction method=	NUMERICAL		
Data completeness =	0.976	Theta(max)= 73.139	
R(reflections) =	0.0399(2560)	wR2(reflections)= 0.1049(3315)	
S = 1.014	Npar = 361		

Crystal data and structure refinement for cassiaflavan 12i

Identification code		12i	
Solvent		CH ₂ Cl ₂	
CCDC		2097422	
Bond precision:	C-C = 0.0019 A	Wavelength= 0.71073	
Cell:	a=17.3610(14) alpha= 90	b=10.1907(8) beta=100.301(3)	c= 15.3314(10) gamma= 90
Temperature:	150 K		
	Calculated	Reported	
Volume	2668.7(3)	2668.7(3)	
Space group	C 2/c	C 1 2/c 1	
Hall group	-C 2yc	-C 2yc	
Moiety formula	C17 H16 O4	C17 H16 O4	
Sum formula	C17 H16 O4	C17 H16 O4	
Mr	284.30	284.30	
Dx, g cm-3	1.415	1.415	
Ζ	8	8	
Mu (mm-1)	0.101	0.101	
F000	1200.0	1200.0	
F000'	1200.65		
h,k,l max	23,13,20	23,13,20	
Nref	3336	3315	
Tmin,Tmax	0.982,0.998	0.702,0.746	
Tmin'	0.980		
Correction method=	NUMERICAL		
Data completeness =	0.994	Theta(max)= 28.329	
R(reflections) =	0.0399(2560)	wR2(reflections)= 0.1049(3315)	
S = 1.071	Npar = 192		