Synergistic effect of metal oxidation states and surface acidity enhanced the trace ethylene

 adsorption of Ag/ZSM-5Chunli Li*, Huaming Yang, Ying Qi, Hao Li*

National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process

Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei
University of Technology, Tianjin 300130, China

Supporting Information Table of Contents:

1. Fig. S1: The N_{2} adsorption-desorption isotherms of $\mathrm{Ag} / \mathrm{ZSM}-5(85), \mathrm{Ag} / \mathrm{ZSM}-5(130)$ and $\mathrm{Ag} / \mathrm{ZSM}-5(200)$.
2. Fig. S2: (a), (b) The SEM images of $\mathrm{Ag} / \mathrm{ZSM}-5(130)$; (c), (d) The TEM images of Ag/ZSM-5(130).
3. Fig. S3: The breakthrough curves of pristine ZSM-5(130), ZSM-5(85), and reduced $\mathrm{Ag} / \mathrm{ZSM}-5(130)$ at the experiment conditions.
4. Fig. S4: (a) The breakthrough curves of $\mathrm{Ag} / \mathrm{ZSM}-5(130)$ with six consecutive cycles;
(b) The adsorption capacity of $\mathrm{Ag} / \mathrm{ZSM}-5(130)$ with six consecutive cycles.
5. Fig. S5: (a) High-resolution XPS spectra of $\mathrm{Ag} / \mathrm{ZSM}-5(130)$ and reduced $\mathrm{Ag} / \mathrm{ZSM}-$ 5(130); (b) The TEM image of reduce $\mathrm{Ag} / \mathrm{ZSM}-5(130)$.
6. Table S1: Structural parameters of the adsorbents.

Fig. S1. The N_{2} adsorption-desorption isotherms of $\mathrm{Ag} / \mathrm{ZSM}-5(85), \mathrm{Ag} / \mathrm{ZSM}-5(130)$ and Ag/ZSM-5(200).

Fig. S2. (a), (b) The SEM images of Ag/ZSM-5(130); (c), (d) The TEM images of Ag/ZSM5(130).

Fig. S3. The breakthrough curves of pristine ZSM-5(130), ZSM-5(85), and reduced Ag/ZSM$5(130)$ at the experiment conditions.

Fig. S4. (a) The breakthrough curves of $\mathrm{Ag} / \mathrm{ZSM}-5(130)$ with six consecutive cycles; (b) The adsorption capacity of $\mathrm{Ag} / \mathrm{ZSM}-5(130)$ with six consecutive cycles.

Fig. S5. (a) High-resolution XPS spectra of $\mathrm{Ag} / \mathrm{ZSM}-5(130)$ and reduced $\mathrm{Ag} / \mathrm{ZSM}-5(130)$; (b) The TEM image of reduce $\mathrm{Ag} / \mathrm{ZSM}-5(130)$.

Table S1.

Structural parameters of the adsorbents.

Adsorbent	$\mathrm{S}_{\text {total }}{ }^{\mathrm{a}}$ $\left(\mathrm{m}^{2} \mathrm{~g}^{-1}\right)$	$\mathrm{V}_{\text {total }}{ }^{\mathrm{b}}$ $\left(\mathrm{cm}^{3} \mathrm{~g}^{-1}\right)$	$\mathrm{V}_{\text {micro }^{\mathrm{c}}}$ $\left(\mathrm{cm}^{3} \mathrm{~g}^{-1}\right)$	D^{d} (nm)	Ag^{e}
$(\%)$					

${ }^{a}$ Specific surface area obtained from BET equation $\left(\mathrm{P} / \mathrm{P}_{0}=0.04-0.32\right)$.
${ }^{\mathrm{b}}$ Total pore volume calculated by NLDFT methods.
${ }^{c}$ NLDFT micropore volume.
${ }^{\mathrm{d}}$ Average pore size obtained by using the HK method.
${ }^{\mathrm{e}}$ Silver loaded content determined by ICP-OES.

