Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Information (ESI).

Experimental and theoretical insights on the formation of weak hydrogen bonds and dihydrogen interactions in the solid-state structure of two eucalyptol derivatives.

Carolina E. Galvez¹, Oscar E. Piro^{2,+}, Gustavo A. Echeverría^{2,+}, Norma Lis Robles^{3,+}, José O. G. Lezama⁴, Sankaran Venkatachalam Sankaran⁵, Subbiah Thamotharan⁵, Margarita B. Villecco¹, María del H. Loandos¹, Diego M. Gil^{4,+,*}

¹ Cátedra de Química Orgánica II. Instituto de Química Orgánica. Facultad de Bioquímica, Química y Farmacia. Universidad Nacional de Tucumán. Ayacucho 471. T4000INI. San Miguel de Tucumán. Argentina.

² Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata e IFLP (CONICET, CCT-La Plata), C.C. 67, 1900, La Plata, Argentina.

³ INQUINOA (CONICET – UNT). Facultad de Ciencias Exactas y Tecnología. Universidad Nacional de Tucumán. Av. Independencia 1800. CP 4000. San Miguel de Tucumán. Argentina.

⁴ INBIOFAL (CONICET – UNT). Instituto de Química Orgánica. Facultad de Bioquímica, Química y Farmacia. Universidad Nacional de Tucumán. Ayacucho 471. T4000INI. San Miguel de Tucumán. Argentina.

⁵ Biomolecular Crystallography laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India.

Figure S1. Optimized molecular structures of compounds 4 (a) and 6 (b) at the B3LYP/6-311++G(d,p) level of theory.

Figure S2. Full and decomposed two-dimensional fingerprint plots for 4.

Figure S3. Full and decomposed two-dimensional fingerprint plots for 6.

Figure S4. Combined QTAIM/NCI plot (0.5 a.u. isosurface) analysis for dimer D2 of compound 4. The bond critical points are represented as red spheres.

 $\Delta E_3 = -8.81 \text{ kcal/mol}$

Figure S5. Experimental (black line) and calculated [B3LYP/6-311++G(d,p)] (red line) IR spectra of **4**.

Figure S6. Experimental (black line) and calculated [B3LYP/6-311++G(d,p)] (red line) IR spectra of **6**.

Figure S7. Experimental (black line) and calculated [B3LYP/6-311++G(d,p)] (red line) Raman spectra of **4**.

Figure S8. Experimental (black line) and calculated [B3LYP/6-311++G(d,p)] (red line) Raman spectra of **6**.

Figure S9. Experimental ¹H NMR spectrum of compound 4 in CDCl₃.

Figure S10. Experimental ¹H NMR spectrum of compound 6 in CDCl₃.

Figure S11. Experimental ¹³C NMR spectrum of compound 4 in CDCl₃.

Figure S12. Experimental ¹³C NMR spectrum of compound 6 in CDCl₃.

Figure S13. Experimental 2D (1H-1H) COSY NMR spectrum of compound 4 in CDCl₃

Figure S14. Experimental 2D (¹H-¹H) COSY NMR spectrum of compound 6 in CDCl₃.

Figure S15. Experimental 2D (¹H-¹³C) HSQC NMR spectrum of compound 4 in CDCl₃.

Fig. S16. Experimental 2D (¹H-¹³C) HSQC NMR spectrum of compound 6 in CDCl₃.

Figure S17. Experimental 2D (¹H-¹³C) HMBC NMR spectrum of compound 4 in CDCl₃.

Figure S18. Experimental 2D (¹H-¹³C) HMBC NMR spectrum of compound 6 in CDCl₃.

CP ^b	Interaction	d(H···O) ^b	$\rho(\mathbf{r})$	$\nabla^2(\rho)$	G(r)	H(r)	V(r)	V/G	DEc
Compound 4									
1	С9-Н9С…О2	2.405	0.0121	0.0545	0.0108	-0.0023	-0.0085	0.79	2.91
Com	pound 6								
1	С9-Н9С…О2	2.295	0.0144	0.0622	0.0129	-0.0026	-0.0104	0.81	3.47
2	С9-Н8А…О4	2.339	0.0136	0.0572	0.0119	-0.0024	-0.0095	0.80	3.20

Table S1: Topological parameters^a for intramolecular interactions observed in the structures of compounds **4** and **6**.

^a ρ : electron density(a.u.), $\nabla^2(\rho)$: Laplacian of electron density (a.u.), G: Kinetic energy density (a.u.), H: Total electronic density (a.u.), V: potential energy density (a.u.). ^b See Fig. 5 for labels of CPs.

^c DE: dissociation energy (kcal/mol) computed with the formula $[DE = 0.429 \times G(r)]$.

Table S2. Experimental and calculated wavenumbers of compound 4 monomer and tentative assignment of fundamental vibrational modes.

Mode	Approximate description ^a	Experi	nental ^b	B3LYP/6-311++G(d,p) °				
N°		IR	Raman	Unscaled	Scaled	Int. IR	Act. Raman	
		(solid)	(solid)					
	v O…H dimer	3442 m	-					
1	$v_{as} C(12)H_3$	-	-	3154	3028	3	30	
2	$v_{as} C(9)H_3$	3014 m	3016 m	3151	3025	6	18	
3	$v_{as} C(8)H_3 + v_{as} C(5)H_2$	2991 m	2993 sh	3121	2996	11	26	
4	$v_{as} C(12)H_3$	-	-	3111	2986	2	20	
5	$v_{as} C(10) H_3$	-	-	3106	2982	17	35	
6	$v_{as} C(10)H_3 + v_{as} C(2)H_2$	2973 s	2975 s	3105	2981	18	31	
7	$v_{as} C(8)H_3 + v_{as} C(5)H_2$	-	-	3102	2978	3	24	
8	$v_{as} C(8)H_3 + v_{as} C(9)H_3$	2964 sh	2965 sh	3100	2976	14	56	
9	$v C(3)H + v_{as} C(2)H_2$	-	-	3096	2972	1	16	
10	$v_{s} C(2)H_{2}$	-	-	3090	2966	1	4	
11	v C(4)H + v C(3)H	-	-	3078	2955	6	46	
12	$v_{as} C(6)H_2 + v_{as} C(5)H_2$	-	-	3074	2951	3	18	
13	v C(3)H + v C(4)H	2941 m	2941 sh	3065	2942	5	48	
14	$v_{s} C(2)H_{2} + v_{s} C(6)H_{2}$	2931 m	2934 m	3052	2930	8	67	
15	$v_{\rm s} C(12) H_3$	-	-	3049	2927	1	64	
16	$v_{s} C(5)H_{2} + v_{s} C(6)H_{2}$	-	-	3048	2926	13	32	
17	$v_{s} C(9)H_{3} + v_{s} C(8)H_{3}$	2912 sh	2912 sh	3037	2916	11	100	
18	$v_{s} C(10)H_{3} + v_{s} C(6)H_{2}$	2896 sh	2896 sh	3036	2914	16	37	
19	$v_{s} C(6)H_{3} + v_{s} C(10)H_{2}$	-	-	3031	2910	1	21	
20	$v_{s} C(8)H_{3} + v_{s} C(9)H_{3}$	2854 m	2854 sh	3030	2909	4	5	
	Fermi resonance	2720 w	2722 w					
21	v C(11)O(3)	1737 vs	1726 w	1786	1714	100	3	
22	$\delta C(5)H_2 + \delta_{as} C(8)H_3$	1483 m	1488 w	1529	1468	2	2	

23	$\delta_{as} C(9)H_3 + \delta_{as} C(8)H_3$	1466 m	1460 m	1509	1449	6	1
24	$\delta_{as} C(10) H_3$	1444 m	1443 m	1500	1440	1	2
25	$\delta_{as} C(8)H_3 + \delta_{as} C(9)H_3$	-	-	1498	1438	<1	2
26	$\delta C(6)H_2 + \delta_{as} C(9)H_3$	-	-	1492	1432	1	1
27	$\delta C(2)H_2 + \delta_{as} C(10)H_3$	1432 sh	1427 sh	1488	1428	4	3
28	$\delta C(5)H_2 + \delta_{as} C(8)H_3$	-	-	1485	1426	<1	4
29	$\omega C(10)H_3 + \delta C(2)H_2$	-	-	1478	1419	<1	<1
30	$\delta_{as} C(12)H_3$	1402 m	1404 w	1478	1418	4	3
31	$\omega C(8)H_3 + \omega C(9)H_3$	-	-	1474	1415	1	2
32	ω C(12)H ₃	-	-	1471	1412	5	2
33	δ C(3)H	-	-	1429	1372	2	2
34	$\delta_{s} C(8)H_{3} + \delta_{s} C(9)H_{3}$	-	-	1421	1364	4	<1
35	$\delta_{\rm s} C(10) {\rm H}_3$	-	-	1410	1354	5	<1
36	$\delta C(4)H + \delta C(5)H_2$	-	-	1400	1344	7	<1
37	$\delta_{s} C(8)H_{3} + \delta_{s} C(9)H_{3}$	1385 s	1387 vw	1397	1341	18	<1
38	$\delta_{\rm s} C(12) H_3$	1374 vs	-	1385	1330	3	2
39	$\delta C(3)H + \omega C(2)H_2$	1360 sh	1361 w	1369	1314	1	<1
40	$\omega C(5)H_2 + \delta C(4)H$	1344 m	1343 vw	1346	1292	<1	1
41	$\omega C(2)H_2 + \delta C(3)H$	-	-	1335	1282	3	1
42	$\delta C(6)H_2 + \delta C(4)H$	1315 m	1320 m	1309	1257	2	2
43	$\tau \omega C(6)H_2 + \tau \omega C(5)H_2$	-	-	1297	1245	4	3
44	τω C(2)H ₂	1284 sh	1284 w	1268	1217	11	1
45	$\omega C(12)H_3 + \nu C(11)O(2)$	1272 m	1273 m	1262	1212	87	<1
46	v C(11)O(2) + v CC ring	1249 vs	1248 w	1256	1206	24	1
47	v C(3)O(2) + v CC ring	1223 s	-	1246	1196	42	1
48	v CC ring	1214 s	1212 vw	1232	1183	34	1
49	v C-CH ₃	-	-	1198	1150	5	<1
50	v C-CH ₃	-	-	1194	1146	6	1
51	v C-CH ₃	1174 m	1175 w	1176	1129	6	2
52	v CC ring	1157 m	1160 w	1167	1120	1	2
53	ν ССС	1147 m	1145 w	1107	1063	16	2
54	$v_{as} C(1)O(1)C(7)$	1095 m	1095 m	1084	1041	3	1
55	δ C(12)C(11)O3	1075 m	1076 vw	1065	1022	2	<1
56	v CC ring	-	-	1057	1015	12	2
57	v C(3)O(2)	1049 sh	1052 w	1050	1008	23	<1
58	v CC ring + v C(11)O(2)	1038 s	1040 vw	1038	996	28	1
59	$\tau \omega C(8)H_3 + \tau \omega C(9)H_3$	1027 m	1028 w	1014	973	1	1
60	$v \text{ CC ring} + \omega \text{ C}(10)\text{H}_3$	1005 m	1005 w	1009	969	14	1
61	$\rho C(10)H_3 + \rho C(2)H_2$	980 s	980 w	992	952	5	1
62	$v CC ring + v_{as} C(1)O(1)C(7)$	974 sh	975 sh	982	943	23	2
63	$\rho C(8)H_3 + \rho C(9)H_3$	933 m	935 m	938	900	4	2
64	$\rho C(9)H_3 + \rho C(8)H_3$	-	-	932	895	<1	1

65	δ CCH ring	923 m	925 m	928	891	2	2
66	δ CCH ring	-	915 w	915	878	<1	3
67	$\rho C(10)H_3 + \gamma CC ring$	907 w	909 sh	910	874	1	1
68	v CCC	878 w	879 w	880	845	1	1
69	$\rho C(2)H_2 + \rho C(6)H_2$	857 m	860 w	859	825	3	1
70	$\rho C(6)H_2 + \rho C(2)H_2$	840 m	843 vw	840	806	5	1
71	$v_{s} C(1)O(1)C(7)$	808 w	809 vw	811	779	<1	<1
72	v CCC ring	777 w	-	776	745	<1	<1
73	δ CCH ring + ν_s C(1)O(1)C(7)	679 w	680 m	678	651	<1	2
74	δ O(2)C(11)O(3)	632 m	630 s	630	605	1	6
75	ω C(11)O(3)	622 m	-	622	597	2	<1
76	ρC(12)H ₃	601 w	603 w	601	577	1	2
77	$\delta C(10)C(1)O(1)$	545 w	548 m	546	524	<1	2
78	δ O(2)C(11)O(3)	518 w	522 vw	522	501	<1	<1
79	$\delta C(8)C(7)C(9) ring + \delta CCO$	508 m	511 w	508	488	1	1
	ring						
80	δ CCO ring	459 m	463 w	462	444	4	<1
81	δ CCC ring	448 w	447 w	448	430	<1	<1
82	δ CCCH ₂	440 w	440 w	433	416	<1	<1
83	$\delta C(2)C(1)C(6)$	421 w	-	401	385	<1	<1
84	δ CCC ring	397 m	-	396	380	1	<1
85	$\delta C(5)C(4)C(7)$	375 m	-	372	357	<1	<1
86	τ CC ring	-	316 w	310	298	<1	1
87	τ C(9)H ₃	-	275 w	276	265	<1	1
88	τ CH ₃	-	261 w	268	257	<1	<1
89	τ CC ring	-	-	258	248	<1	<1
90	τCH_3	-	232 w	238	228	<1	<1
91	$\tau C(8)H_3$	-	-	219	210	1	<1
92	τ C(10)H ₃	-	-	209	201	<1	<1
93	τ CC ring	-	-	201	193	<1	<1
94	τ CH ₃	-	116	181	174	<1	<1
95	τ C(12)H ₃	-	-	96	92	1	<1
96	τ skeletal	-	76	89	85	<1	<1
97	τ skeletal	-	-	56	54	<1	<1
98	τ C(3)O(2)	-	-	43	41	<1	<1
99	τ skeletal	-	-	11	11	1	<1

^a Main contributors to fundamental vibrational modes. v: stretching; δ : bending; ρ : rocking; ω : wagging; $\tau \omega$: twisting; τ : torsional modes; s: symmetric; as: asymmetric.

^b s: strong; vs: very strong; m: medium; w: weak; vw: very weak; sh: shoulder.

^c Shaded columns show the best correlation with experimental frequencies observed. Higher frequency values were scaled with 0.9676 factor [Ref. 55]. Relative infrared intensities and Raman activities were normalized to 100%.

Mode	Approximate description ^a	Experir	nental ^b	B3	3LYP/6-31	1++G(d,	p) °
		IR	Raman	unscaled	scaled	Int. IR	Act. Raman
N°		(solid)	(solid)				
	v O…H dimer	3455 w	-				
	v O…H dimer	3433 w	-				
1	$v_{as} C(9)H_3$	-	-	3156	3030	3	21
2	$v_{as} C(14)H_3$	3029 m	3029 w	3156	3030	1	30
3	$v_{as} C(12)H_3$	3021 m	3021 w	3156	3030	1	33
4	$v_{as} C(8)H_3$	-	-	3153	3027	2	16
5	v _{as} C(12)H	-	-	3111	2987	1	20
6	$v_{as} C(14)H_3$	-	-	3110	2986	1	20
7	$v_{as} C(10) H_3$	-	-	3108	2984	6	35
8	$v_{as} C(10)H_3 + v_{as} C(6)H_2 +$	2977 s	2977 s	3107	2983	9	47
	$v_{as} C(2)H_2$						
9	$v_{as} C(10) H_3$	-	-	3101	2977	1	15
10	$v_{as} C(8)H_3 + v_{as} C(9)H_3$	2965 s	2958 s	3100	2976	9	62
11	$v_{as} C(6)H_2 + v_{as} C(2)H_2$	-	-	3098	2974	1	7
12	ν C(4)H	-	-	3094	2970	1	36
13	$v_{as} C(8)H_3 + v_{as} C(9)H_3$	-	-	3090	2966	<1	5
14	v C(3)H + v C(4)H + v	-	-	3085	2962	1	23
	C(5)H						
15	v C(3)H + v C(5)H	-	-	3074	2951	1	2
16	$v_{s} C(2)H_{2} + v_{s} C(6)H_{2}$	-	-	3056	2934	4	75
17	$v_{s} C(12)H_{3}$	-	-	3050	2928	<1	71
18	$v_{\rm s} C(14) H_3$	-	-	3050	2928	<1	72
19	$v_{s} C(6)H_{2} + v_{s} C(2)H_{2}$	-	-	3047	2925	4	34
20	$v_{s} C(8)H_{3} + v_{s} C(9)H_{3}$	2918 sh	2919 sh	3040	2918	8	100
21	$v_{s} C(10) H_{3}$	2876 m	2874 w	3034	2913	3	42
22	$v_{s} C(9)H_{3} + v_{s} C(8)H_{3}$	-	2850 vw	3031	2910	2	9
	Fermi resonance	2710 vw	2710 vw				
23	v C(11)O(3)	1741 vs	1734 s	1791	1719	74	4
24	v C(13)O(5)	1728 vs	1725 vs	1788	1716	32	1
25	$\delta_{as} C(9)H_3 + \delta_{as} C(8)H_3$	1474 w	-	1516	1455	4	1
26	$\delta_{as} C(8)H_3 + \delta_{as} C(9)H_3$	1455 w	1451 sh	1504	1444	1	3
27	$\delta_{as} C(10) H_3$	1440 w	1443 s	1500	1440	<1	3
28	$\delta_{as} C(8)H_3 + \delta_{as} C(9)H_3$	-	-	1489	1429	<1	2
29	$\delta_{s} C(2)H_{2} + \delta_{as} C(10)H_{3}$	-	-	1488	1429	2	3
30	$\delta_{\rm s} {\rm C}(6) {\rm H}_2 + \delta_{\rm as} {\rm C}(10) {\rm H}_3$	-	-	1488	1429	1	1
31	$\delta_{as} C(8)H_3 + \delta_{as} C(9)H_3 + \delta_{as}$	-	-	1481	1422	<1	2
	C(10)H ₃						

Table S3. Experimental and calculated wavenumbers of 6 monomer and tentative assignment of fundamental vibrational modes.

32	$\delta_{as} C(12)H_3$	-	-	1478	1419	2	3
33	$\delta_{as} C(14)H_3$	-	-	1476	1417	1	2
34	$\delta_{s} C(2)H_{2} + \delta_{s} C(6)H_{2}$	-	-	1474	1415	<1	1
35	ω C(14)H ₃	-	-	1471	1412	3	3
36	$\omega C(12)H_3$	-	-	1471	1412	3	3
37	$\delta C(3)H + \delta C(5)H$	-	-	1451	1393	1	1
38	$\delta C(5)H + \delta C(3)H$	-	-	1428	1371	<1	3
39	$\delta_{s} C(8)H_{3} + \delta_{s} C(9)H_{3}$	-	-	1424	1367	2	<1
40	$\delta_{\rm s} C(10) {\rm H}_3$	1416 w	1414 m	1411	1354	2	<1
41	$\delta_{s} C(8)H_{3} + \delta_{s} C(9)H_{3}$	-	-	1404	1348	3	<1
42	$\delta_{s} C(12)H_{3} + \delta_{s} C(14)H_{3}$	-	-	1400	1344	5	<1
43	$\delta_{s} C(14)H_{3} + \delta_{s} C(12)H_{3}$	1390 sh	1389 m	1398	1342	16	<1
44	$\delta C(3)H + \delta C(4)H + \delta C(5)H$	1376 m	1380 m	1387	1332	4	1
45	$\delta CH_2 + \delta CH$	1364 s	1361 m	1363	1308	1	<1
46	$\delta CH_2 + \delta CH$	1336 vw	1335 vw	1340	1286	<1	1
47	$\delta CH_2 + \delta CH$	1316 s	1315 m	1314	1261	2	2
48	$\delta CH_2 + \delta CH$	-	-	1309	1257	1	4
49	$\omega C(10)H_3$	1286 sh	1283 m	1277	1226	13	2
50	$\tau \omega C(2)H_2 + \tau \omega C(6)H_2$	-	-	1266	1215	5	<1
51	v C(11)O(3) + v CC ring	1253 vs	1261 w	1260	1210	42	1
52	v C(13)O(4) + v CC ring	1241 vs	1246 m	1252	1202	44	1
53	v CC ring	-	-	1246	1196	5	1
54	$\delta CH_3 + v CC ring$	1223 vs	1220 m	1241	1191	100	2
55	ν C-CH ₃	-	-	1199	1151	2	<1
56	$\delta CH_3 + \delta CH_2$	1187 sh	1186 w	1198	1150	9	1
57	$\delta CH_3 + \delta CH_2$	1179 m	1179 w	1186	1139	<1	3
58	$\tau \omega C(6)H_2 + \tau \omega C(2)H_2$	-	1167 m	1167	1120	6	1
59	v CC ring	1149 m	1149 w	1137	1092	8	1
60	ν ССС	1125 m	1121 m	1107	1063	11	1
61	$v_{as} C(1)O(1)C(7)$	1092 m	1090 s	1070	1027	2	2
62	δ CCO	-	1064 w	1067	1024	11	1
63	τω C(14)H ₃	-	-	1065	1022	1	<1
64	τω C(12)H ₃	1052 m	1051 w	1065	1022	1	1
65	v C(11)O(2) + v C(13)O(4)	-	1034 vw	1039	997	45	1
66	ν CC ring + ν_{as}	1027 m	1026 sh	1028	987	8	1
	C(1)O(1)C(7)						
67	$\tau \omega C(8)H_3 + \tau \omega C(9)H_3$	1015 m	1015 s	1020	979	1	1
68	v CC ring	-	-	1014	973	4	1
69	ν CC ring + ω C(10)H ₃	-	1002 sh	995	955	2	1
70	ν CC ring + ν_{as}	986 m	985 s	988	948	9	3
	C(1)O(1)C(7)						
71	$\rho C(10)H_3 + \rho C(2)H_2$	967 m	967 w	976	937	9	<1

72	$\rho C(8)H_3 + \rho C(9)H_3$	-	-	942	904	2	3
73	$\rho C(9)H_3 + \rho C(8)H_3$	934 w	934 m	937	900	1	2
74	δ CCH ring	924 m	924 s	929	892	3	6
75	δ CCH ring	909 vw	-	914	877	1	<1
76	v CC ring	902 sh	902 m	906	870	<1	1
77	v CCC	888 w	888 m	893	857	<1	1
78	$\rho C(2)H_2 + \rho C(6)H_2$	862 m	861 w	863	828	1	<1
79	$\rho C(6)H_2 + \rho C(2)H_2$	-	-	842	808	1	1
80	$v_{\rm s} C(1)O(1)C(7)$	840 m	838 m	837	804	3	1
81	v CCC ring	791 vw	791 vw	791	759	<1	<1
82	δ CCH ring	-	708 w	709	681	<1	1
83	δ CCH ring + δ	680 w	681 m	684	657	1	1
	C(3)O(2)C(11)						
84	δ O(2)C(11)O(3)	632 m	633 s	632	607	3	3
85	ω C(13)O(5)	617 m	617 s	619	594	2	1
86	ρC(14)H ₃	-	-	608	584	1	3
87	ω C(11)O(3)	604 m	605 ws	602	578	1	1
88	δ C(10)C(1)O(1)	548 w	548 m	546	524	<1	2
89	δ O(5)C(13)C(14) + δ CCC	525 m	525 w	528	507	1	1
	ring						
90	δ CCO ring	509 m	-	515	494	1	<1
91	δ CCC ring	500 m	500 m	502	482	1	2
92	δ CCC ring	464 sh	466 w	465	446	1	<1
93	δ CCO ring	456 m	458 vw	453	435	2	<1
94	δ CCC ring	442 w	442 w	439	421	<1	<1
95	δ C(4)C(7)C(9)	418 w	418 m	420	403	<1	<1
96	δ CCC ring	-	402 m	404	388	<1	<1
97	δ CCC ring	-	371 m	359	345	<1	1
98	τ CC ring	-	-	304	292	1	<1
99	τ CC ring + τ CH ₃	-	296 sh	290	278	<1	<1
100	δ CCC ring	-	281 w	275	264	<1	<1
101	τ CC ring + τ CH ₃	-	-	272	261	<1	1
102	τ CC ring	-	252 w	251	241	<1	<1
103	$\tau C(9)H_3 + \tau C(8)H_3$	-	239 w	241	231	<1	<1
104	$\tau C(8)H_3 + \tau C(9)H_3$	-	-	236	227	1	<1
105	τ CH ₃	-	-	222	213	1	<1
106	τ C(10)H ₃	-	-	219	210	<1	<1
107	τ CC ring + τ CH ₃	-	-	207	199	<1	<1
108	τ CH ₃	-	-	191	183	<1	<1
109	τ skeletal	-	140 vw	121	116	<1	<1
110	τ skeletal	-	103 sh	94	90	<1	<1
111	τ CC ring	-	71 m	78	75	<1	<1
112	τ CC ring	-	-	75	72	1	<1

113	τ skeletal	-	-	55	53	1	<1
114	τ C(14)H ₃	-	-	48	46	<1	<1
115	$\tau C(5)O(4)$	-	-	42	40	<1	<1
116	τ C(12)H ₃	-	-	39	37	<1	<1
117	τ skeletal +	-	-	34	33	<1	<1

^a Main contributors to fundamental vibrational modes. v: stretching; δ : bending; ρ : rocking; ω : wagging; $\tau \omega$: twisting; τ : torsional modes; s: symmetric; as: asymmetric.

^b s: strong; vs: very strong; m: medium; w: weak; vw: very weak; sh: shoulder.

^c Shaded columns show the best correlation with experimental frequencies observed. Higher frequency values were scaled with 0.9676 factor [Ref. 55]. Relative infrared intensities and Raman activities were normalized to 100%.