Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Identifying Molecular Fluorophore Impurities in the Synthesis of Low-Oxygen-Content, Carbon Nanodots Derived from Pyrene

Nadeesha L. Kothalawala,^{a†} Sang Won Kim,^{b†} Nam Hee Kim,^{c†} Collan J. Henderson,^a Minsu Seol,^b Fuqian Yang,^d Seung-Yeon Kwak,^b Kyu Young Hwang,^b Won-Joon Son,^b Hyeon-Jin Shin,^{*b} Hyeonho Choi,^{*b} Byeong-Su Kim^{*b}, Doo Young Kim^{*a}

^a Department of Chemistry, University of Kentucky, Lexington, Kentucky, 40506, USA

^b Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co. Ltd., Suwon 16678, Republic of Korea

^c Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea

^d Materials Program, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA

[†]These authors contributed equally to this work.

* Corresponding authors. Email address: <u>hyeonjin.shin@samsung.com</u> (H. J. Shin); <u>hono.choi@samsung.com</u> (H. Choi); bskim19@yonsei.ac.kr (B. S. Kim); dooyoung.kim@uky.edu (D. Y. Kim);

F _Y		F _G		F _{CND}	
Excitation - 455 nm, Emission - 584 nm		Excitation - 455 nm, Emission - 515 nm		Excitation - 455 nm, Emission - 532 nm	
Chi sq.	1.170382	Chi sq.	1.124855	Chi sq.	1.042829
τ ₁	8.91 ns	τ ₁	3.19 ns	τ ₁	1.13 ns
		$\% \tau_1$	15.25 %	% τ ₁	11.03 %
		$ au_2$	5.62 ns	τ2	3.75 ns
		% τ ₂	84.75 %	% τ ₂	47.54 %
				τ3	8.80 ns
				% τ3	41.43 %

Table S1. Time-correlated single-photon-counting (TCSPC) decay parameters determined for F_y , F_g and F_{CND} .

Figure S1. (a) UV-VIS absorbance spectra of pyrene and TNP in MeOH, PL spectra of (b) pyrene and (c) TNP in MeOH, PL spectra of fractions (d) F_{Y} , (c) F_{G} , and (d) F_{CND} in MeOH.

Figure S2. PLE spectra of the fractions (a) F_{Y} , (b) F_{G} , and (c) F_{CND} in MeOH.

Figure S3. (a-c) FT-IR spectra of the fractions (a) F_Y, (b) F_G, (c) F_{CND}, (d) pyrene and (e) TNP

Figure S4. XPS survey spectra of (a) F_Y , (b) F_G , and (c) F_{CND} . Deconvoluted high-resolution O1s XPS spectra of (d) F_Y , (e) F_G , and (f) F_{CND} . Deconvoluted high resolution N1s XPS spectra of (g) F_Y , (h) F_G , and (i) F_{CND} . (j) the percentages of C, O, and N for each fraction determined from XPS analysis.

Figure S5. TEM images of (a) F_{Y} , (b) F_{G} , and (c) F_{CND} . (d-e) High-resolution TEM images of

 F_{CND} showing the graphitic lattice fringes of CNDs.

Figure S6. (a) A schematic of a procedure to obtain acetone wash-out (S_A) and the base washout (pH 11.2, ammonia) (S_N) , (b) photographs of the acetone washout (S_A) and the base washout (S_N) , (c) photographs of crude sample solutions at various pH

Figure S7. PL spectra of (a) the acetone washout (S_A), base washout (pH = 11.2) (S_N), and (c) the residue left after both washouts