Supporting Information

NiCoP Modified Lead-free Double Perovskite Cs₂AgBiBr₆ for Efficient Photocatalytic Hydrogen Generation

Qiao Huang,^[a] Yanmei Guo,^[a] Jinxi Chen,^[a] Yongbing Lou^{*[a]} and Yixin Zhao^[b]

[a] School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China. E-mail: lou@seu.edu.cn.

[b] School of Environmental Science and Engineering, Shanghai Jiao TongUniversity,Shanghai,200240,P.R.China.

Characterizations

The Zeta potential of the sample was measured using a multi-angle particle size potential analyzer, the instrument model is Nanobrook Omni. X-ray powder diffraction (XRD) measurement was performed by an Ultima IV diffractometer (Japan) equipped with Cu-K α radiation ($\lambda = 0.15406$ nm). Transmission electron microscopy (TEM) images and high-resolution transmission electron microscopy (HRTEM) images were taken on JEOL-JEM-2010 with an acceleration voltage of 200 kV. High-angle annular dark-field scanning TEM (HAADF-STEM) and elemental mapping analyses were acquired on a FEI Tecnai G2 F30 S-TWIN microscope equipped with a field-emission gun working at 300 kV. X-ray photoelectron spectroscopy (XPS) measurement was performed on a Perkin-Elmer PHI 5000C ESCA system with Al Ka radiation operated at 250 W. Optical absorption spectra (UV-vis DRS) of the samples were measured by a Shimadzu UV-2600 spectrometer. Photoluminescence (PL) spectra of the samples was measured using a Fluoromax-4 fluorescence spectrometer (Horiba) at room temperature. Time-resolved PL spectrum was also recorded on FLS1000 using a supercontinuum 400 nm blaze as the light source, and the excitation wavelength is 375 nm. The decay curves detected at 650 nm were fitted by a tri-exponential decay function using Fluoracle software. The electrochemical measurements were acquired on a CHI660D electrochemical workstation using a conventional three electrodes cell with a working electrode, a Pt plate and a Ag/AgCl electrode as the counter electrode and reference electrode, respectively. The working electrode was prepared through a clean FTO deposited with a sample film of 0.5*0.5 cm. CH₂Cl₂ solution containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) was used as the electrolyte.

- Photocurrent measurements were carried out under a 300 W Xenon lamp coupled with a UV cutoff filter (λ > 420 nm). Set the voltage parameter to 1.0 V, and test the light on and off the sample at an interval of 100 s.
- In EIS measurements, set the open circuit voltage, high frequency 10 kHz, low frequency 0.1 Hz.

 In Mott-Schottky plots measurements, set frequency 1000 Hz, amplitude 10 mV. The voltage is set to open circuit voltage ±0.8 V.

Figure S1. (a) XRD pattern of NCP, (b) XRD patterns of x% NCP/CABB samples, (c) XRD patterns and (d) magnified peaks at (111) of 12.5% NCP/CABB and CABB.

Figure S2. Zeta potentials of CABB and NCP.

Figure S3. (a & b) TEM images of NCP.

Figure S4. (a) Br 3d spectra of CABB and 12.5% NCP/CABB, (b) Co 2p spectra of NCP.

Figure S5. The Tauc plots of NCP.

Figure S6. Photocatalytic H_2 evolution activities of CABB, 12.5% NCP/CABB and CABB/5% Pt.

Figure S7. Comparison of H_2 evolution activities (a) NCP and (b) without light irradiation and without photocatalyst.

Figure S8. (a & b) SEM images of 12.5% NCP/CABB composites after 16 h of photocatalytic H_2 evolution.

Figure S9. Mott-Schottky plots for (a) CABB and (b) NCP photocatalysts in CH_2Cl_2 solution containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆).

Figure S10. Schematic diagram of band bending on NCP/CABB.

Figure S11. Time-dependent UV–Vis spectra of Br_3^- for photocatalytic HBr splitting reaction of 12.5% NCP/CABB.

	Reactant	T • 17	H ₂ activity	Stability	D C
Materials	solution	Light source	(µmol g ⁻¹ h ⁻¹)	(h)	Ref
Pure Cs ₂ AgBiBr ₆	HBr/H ₃ PO ₂	300 W Xe lamp	4.02		This
	solution	$(\lambda \ge 420 \text{ nm})$	4.23		work
Cs ₂ AgBiBr ₆ /5% Pt	HBr/H ₃ PO ₂	300 W Xe lamp	7 70		This
	solution	$(\lambda \ge 420 \text{ nm})$	1.10		work
NiCoP/Cs2AgBiBr6	HBr/H ₃ PO ₂ 300 W Xe lamp		282.16	16	This
	solution	$(\lambda \ge 420 \text{ nm})$	575.10	10	work
RGO/Cs2AgBiBr6	HBr/H ₃ PO ₂	300 W Xe lamp	48.0	120	1
	solution	$(\lambda \ge 420 \text{ nm})$	40.9		
N-C/Cs2AgBiBr6	HBr/H ₃ PO ₂	300 W Xe lamp	280	24	2
	Solution	$(\lambda \ge 420 \text{ nm})$	380		
Cs2AgBiBr6/MoS2	HBr/H ₃ PO ₂	300 W Xe lamp	975	500	3
	solution	$(\lambda \ge 420 \text{ nm})$	87.3		
PtI _X /[(CH ₃) ₂ NH ₂] ₃ [BiI ₆]	HI/H ₃ PO ₂	9 mW LED lamp	47	100	4
	solution	$(\lambda = 465 \text{ nm})$	47		
DMASnBr ₃ @g-C ₃ N ₄	10% TEOA,	1500 W Xe lamp,	1720		5
	Pt 3 wt%	(300-800 nm)	1730		C C
PEA ₂ SnBr ₄ /g-C ₃ N ₄	10% TEOA,	1500 W Xe lamp,	1(12		6
	Pt 3 wt%	(300-800 nm)	1613		0
Cs ₃ Bi _{2x} Sb _{2-2x} I ₉ /Pt	HI/H ₃ PO ₂	300 W Xe lamp	02(50	7
	solution	$(\lambda \ge 420 \text{ nm})$	926	30	
Cs ₃ Bi ₂ Br ₉ /g-C ₃ N ₄	10% TEOA,	1500 W Xe lamp,	1050		8
(3wt% Pt)	Pt 3 wt%	(300-800 nm)	1020		0

Table S1. Comparison of H_2 evolution over reported lead-free perovskitephotocatalysis.

Materials	$\tau_{1}\left(ns\right)$	$B_1(\%)$	$\tau_{2}\left(ns\right)$	B ₂ (%)	τ_3 (ns)	B ₃ (%)	$\tau_{avg}\left(ns\right)$
CABB	1.24	11.12	26.23	22.48	134.94	66.40	126.73
12.5% NCP/CABB	0.58	59.98	3.15	23.16	32.02	16.86	27.08

Table S2. PL decay fitting parameters of CABB and 12.5% NCP/CABB usingtriexponential decay kinetics.

References

- 1. T. Wang, D. Yue, X. Li and Y. Zhao, "Appl. Catal., B", 2020, 268, 118399.
- 2. Y. Jiang, K. Li, X. Wu, M. Zhu, H. Zhang, K. Zhang, Y. Wang, K. P. Loh, Y. Shi and Q.-H. Xu, *ACS Appl. Mater. Interfaces*, 2021, **13**, 10037-10046.
- 3. Y. Zhang, Z. Sun, Z. Wang, Y. Zang and X. Tao, *Int. J. Hydrogen Energy*, 2022, **47**, 8829-8840.
- H. Zhao, Y. Li, B. Zhang, T. Xu and C. Wang, *Nano Energy*, 2018, 50, 665-674.
- L. Romani, A. Speltini, F. Ambrosio, E. Mosconi, A. Profumo, M. Marelli, S. Margadonna, A. Milella, F. Fracassi, A. Listorti, F. De Angelis and L. Malavasi, *Angew. Chem. Int. Ed.*, 2021, 60, 3611-3618.
- L. Romani, A. Bala, V. Kumar, A. Speltini, A. Milella, F. Fracassi, A. Listorti, A. Profumo and L. Malavasi, *J. Mater. Chem. C*, 2020, 8, 9189-9194.
- G. Chen, P. Wang, Y. Wu, Q. Zhang, Q. Wu, Z. Wang, Z. Zheng, Y. Liu, Y. Dai and B. Huang, *Adv. Mater.*, 2020, **32**, 2001344.
- L. Romani, A. Speltini, C. N. Dibenedetto, A. Listorti, F. Ambrosio, E. Mosconi, A. Simbula, M. Saba, A. Profumo, P. Quadrelli, F. De Angelis and L. Malavasi, *Adv. Funct. Mater.*, 2021, **31**, 2104428.