ELECTRONIC SUPPLEMENTARY INFORMATION

Solid-state landscape and biopharmaceutical implications of novel metformin based-salts

Luan F. Diniz^{a,b}, Paulo S. Carvalho Jr^c, José E. Gonçalves^a, Renata Diniz^{b*}, Christian Fernandes^{a*}

^aLaboratório de Controle de Qualidade de Medicamentos e Cosméticos, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil. ^bDepartamento de Química, Instituto de Ciências Exatas (ICEx), Universidade Federal de Minas Gerais, 31270-901-Belo Horizonte, MG, Brazil.

^cInstituto de Física, Universidade Federal do Mato Grosso do Sul, 79074-460, Campo Grande, MS, Brazil.

*E-mail: dinizr@qui.ufmg.br, cfernandes@farmacia.ufmg.br

COMPLEMENTARY FIGURES AND TABLES

Figure S1. ORTEP type diagrams of the MET salts asymmetric units with 50% probability ellipsoids showing atomic numbering scheme: (a) metformin maleate (MET-MAL), (b) metformin malonate (MET-MLN), and (c) metformin saccharinate (MET-SAC). Hydrogen atoms are shown as spheres of arbitrary radii.

Figure S2. Fourier difference maps, under different perspectives, of both metformin cation (MET⁺) and maleate anion (MAL⁻) molecules from MET-MAL salt, showing in which O- and N-atoms the H-atoms are attached (blue spots).

Figure S3. Fourier difference maps, under different perspectives, of both metformin cation (MET⁺) and malonate anion (MLN⁻) molecules from MET-MLN salt, showing in which O- and N-atoms the H-atoms are attached (blue spots).

Figure S4. Fourier difference maps, under different perspectives, of both metformin cation (MET⁺) and saccharinate anion (SAC⁻) molecules from MET-SAC salt, showing in which O- and N-atoms the H-atoms are attached (blue spots).

Figure S5. Molecular planes view involved in the cation…anion motif formation of the maleate and malonate metformin salts. The existence of coplanarity between the planes is observed only in the maleate salt structure.

Figure S6. Interaction energies for MET-HCl salt calculated with B3LYP model. *R* is the distance (Å) between molecular centroids (mean atomic position) and *N* is the number of times the interaction appears within a radius of 3.8Å from the MET⁺ cation (uncolored molecule).

Figure S7. Interaction energies for MET-MAL salt calculated with B3LYP model. *R* is the distance (Å) between molecular centroids (mean atomic position) and *N* is the number of times the interaction appears within a radius of 3.8Å from the MET⁺ cation (uncolored molecule).

Figure S8. Interaction energies for MET-MLN salt calculated with B3LYP model. *R* is the distance (Å) between molecular centroids (mean atomic position) and *N* is the number of times the interaction appears within a radius of 3.8Å from the MET⁺ cation (uncolored molecule).

Figure S9. Interaction energies for MET-SAC salt calculated with B3LYP model. *R* is the distance (Å) between molecular centroids (mean atomic position) and *N* is the number of times the interaction appears within a radius of 3.8Å from the MET⁺ cation (uncolored molecule).

Figure S10. ¹H NMR (400 MHz) spectrum of metformin hydrochloride (MET-HCl) in DMSO-d₆.

Figure S11. ¹H NMR (400 MHz) spectrum of metformin maleate (MET-MAL) in DMSO-d₆.

Figure S12. ¹H NMR (400 MHz) spectrum of metformin malonate (MET-MLN) in DMSO-d₆.

Figure S13. ¹H NMR (400 MHz) spectrum of metformin saccharinate (MET-SAC) in DMSO-d₆.

Table S1. Results of linearity, accuracy and precision obtained during validation of the analytical method.

Parameter	Results		
Line	earity		
Concentration range (µg mL ⁻¹)	8.0-40.0		
Regression	F = 74389 (p < 0.001)		
Lack of fit	F = 2.64 (p = 0.10)		
Slope (b)	111531		
Intercept (a)	-47289		
Coefficient of determination (R^2)	0.9998		
Acc	uracy		
Level 1 (8.0 μ g mL ⁻¹)	Mean recovery: 99.98% (n = 6)		
Level 2 (24.0 μ g mL ⁻¹)	Mean recovery: $100.03 (n = 6)$		
Level 3 (40.0 μ g mL ⁻¹)	Mean recovery: $100.25 (n = 6)$		
Prec	cision		
Repeatability (RSD%)	0.27-0.83 (n = 3)		
Intermediate (RSD%)	0.37-0.64 (n = 6)		
RSD, relative standard deviation.			

Table S2. Parameters of the calibration curves obtained during validation of the bioanalytical method.

Day of analysis	Linearity range (ng mL ⁻¹)	Linear regression			
		Slope (b)	Intercept (a)	\mathbb{R}^2	
First		108.19	-1031	0.9995	
Second	200-1400	108.24	-1079	0.9997	
Third		108.78	-1173	0.9998	

R², coefficient of determination.

	Nominal	Within-run $(n = 5)$			Between runs $(n = 15)$		
Level	concentration (ng mL ⁻¹)	MMC (ng mL ⁻¹)	Precision RSD (%)	Accuracy RSE (%)	MMC (ng mL ⁻¹)	Precision RSD (%)	Accuracy RSE (%)
LLOQ QC	200	194.6	2.06	-2.71	200.2	3.71	0.09
LQC	500	490.2	1.90	-1.95	488.6	1.26	-2.28
MQC	800	801.4	0.24	0.18	784.6	1.75	-1.92
HQC	1100	1107.0	0.32	0.64	1086.4	1.82	-1.24
DQC	2000	1954.6	0.27	-2.27	1949.6	0.95	-2.52

Table S3. Precision, accuracy, and recovery assays performed during validation of the bioanalytical method.

MMC, mean measured concentration; RSE, relative standard error; RSD, relative standard deviation; LLOQ QC, lower limit of quantification quality control; LQC, low quality control; MQC, mid quality control; HQC high quality control; DQC, dilution quality control.

Level	Nominal concentration (ng mI ⁻¹)	Bench-top stability (room temperature for 1.5 h)		Long-term stability (-70 °C for 4.5 h)		Freeze-thaw stability (three cycles)	
	(ing init.)	RSD (%)	RSE (%)	RSD (%)	RSE (%)	RSD (%)	RSE (%)
LQC	500	1.03	-2.75	0.57	-3.61	3.52	-1.72
HQC	1100	0.15	0.46	0.41	1.06	2.77	3.04

RSE, relative standard error; RSD, relative standard deviation; LQC, low quality control; HQC, high quality control.

Hydrochloric Acid (HCl) Solution (1000 mL)				
pH	1.2			
Conc. (mol/L)	0.1			
HCl _{conc} . (mL)	8.4			
Deionized water to complete the 1000 mL v	olumetric flask			
Acetic Acid Solution (100	0 mL)			
Conc. (mol/L)	0.2			
$CH_3COOH_{glacial}$ (mL)	11.5			
Deionized water to complete the 1000 mL v	olumetric flask			
Sodium Acetate Solution (10)0 mL)			
Conc. (mol/L)	0.2			
$C_2H_3O_2Na(g)$	16.4			
Deionized water to complete the 1000 mL v	olumetric flask			
Acetate Buffer (1000 mL)				
pH	4.5			
$0.2 \text{ M C}_2\text{H}_3\text{O}_2\text{Na} (\text{mL})$	220			
$0.2 \text{ M CH}_3 \text{COOH} (\text{mL})$	250			
Deionized water to complete the 1000 mL volumetric flask				
Monopotassium Phosphate Soluti	ion (1000 mL)			
Conc. (mol/L)	0.2			
$KH_2PO_4(g)$	27.2			
Deionized water to complete the 1000 mL v	olumetric flask			
Dipotassium Phosphate Solution (1000 mL)				
Conc. (mol/L)	0.2			
$K_{2}HPO_{4}(g)$	34.8			
Deionized water to complete the 1000 mL volumetric flask				
Phosphate Buffer (1000 mL)				
pH	6.8			
$0.2 \text{ M KH}_2\text{PO}_4(\text{mL})$	255			
$0.2 \text{ M K}_2 \text{HPO}_4 (\text{mL})$	245			
Deionized water to complete the 1000 mL volumetric flask				

Table S5. Composition of the solutions and standard buffer solutions used in the solubility and dissolution experiments.

Table S6. Calculated ΔpKa between MET and the salt formers.

Compound	рКа	ΔpKa =	Stoichiometry	
		$(pK_a(base) - pK_a(acid))$		
Metformin free base	12.4	-		
Maleic acid	1.93	10.47	1:1 salt	
Malonic acid	2.84	9.56	1:1 salt	
Saccharin	1.60	10.80	1:1 salt	

MET-MAL	MET-MLN	MET-SAC	Assignment
3350 and 3194	3328, 3149	3344 and 3150	$v(NH_2)_{amine}$
2936	2937	2930	v (CH) _{aliphatic}
1706	1730	-	$v (CO)_{carboxyl}$
-	-	1638	v (CO) _{amide}
1604	1589	-	$v_a (COO^-)_{carboxylate}$
1414	1425	-	$v_{s}(COO^{-})_{carboxylate}$
-	-	1332 and 1140	$\nu (SO_2)_{sulphonyl}$

Table S7. Principal FT-IR bands (cm⁻¹) for the novel MET salts.

 \overline{v} = stretching; a = antisymmetric; s = symmetric.

Table S8. pH measured in different dissolution media before and after solubility studies.

Dissolution media	pH 6.8	pH 4.5	pH 1.2	H_2O
pH (dissolution media before the tests)	6.80	4.50	1.20	5.90
pH (MET-HCl solution)	6.68	4.41	1.23	3.35
pH (MET-MAL solution)	6.73	4.45	1.26	3.58
pH (MET-MLN solution)	6.75	4.47	1.25	3.64
pH (MET-SAC solution)	6.71	4.43	1.27	3.53