Electronic Supporting Information

Imidazopyridine-Fluoride Interaction: Solvent-switched AIE Effect via

S...O Conformational Locking

Annu Kumari^a, Wim Dehaen^b, Deepak Chopra*^c, and Swapan Dey^{*a}

^aDepartment of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad 826004, India. Email: <u>swapan@iitism.ac.in</u>

^bMolecular Design & Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium

^cCrystallography & Crystal Chemistry Laboratory, Department of Chemistry, IISER Bhopal, 462066, India. Email: <u>dchopra@iiserb.ac.in</u>

Table of Contents:		
1.	Crystal data of C1, C2, C1.S and C2.S and H-bonding data	2-3
2.	Spectroscopic characterization of compounds	4-8
3.	LOD, binding constant, and stoichiometry	8-10
4.	Emission titration	10-11
5.	The peculiar behavior of C1 in CHCl ₃	11
6.	D ₂ O exchange of compounds in ¹ H NMR	12-13
7.	¹ H and ¹⁹ F NMR spectra of complexes	14-15
8.	FT-IR spectroscopy	16
9.	HR-MS spectrum of complexes	16-17
10.	DFT calculated optimized structure	18
11.	Titration plot of carboxamide with CN-	18-19
12.	FE-SEM image	20
13.	References	20

Crystal data of C1, C2, C1.S, and C2.S and H-bonding data

Table S1. <u>Crystal data</u>

Compound	C1	C2	C1.S	C2.S
CCDC No.	2085440	2085441	2085442	2085443
Empirical formula	C ₁₅ H ₉ ClN ₄ OS	C ₁₅ H ₁₀ ClN ₅ O	C ₃₁ H ₄₈ Cl N ₅ O ₃ S	C ₃₁ H ₄₉ Cl N ₆ O ₃
Formula weight	328.77	311.73	606.25	589.21
Temperature/K	292(2)	292(2)	292(2)	292(2)
Crystal system	Monoclinic	Triclinic	Monoclinic	Orthorhombic
Space group	$P2_1/c$	P-1	<i>P2/c</i>	Pbcn
a/Å	8.0687(8)	6.5832(8)	23.0412(9)	46.3890(18)
b/Å	6.5157(5)	7.6795(10)	9.3628(4)	9.2469(6)
c/Å	26.9123(17)	13.7007(13)	15.7390(7)	15.7793(9)
α/°	90	97.024(9)	90	90
β/°	90.204(7)	91.925(9)	98.319(4)	90
γ/°	90	96.046(10)	90	90
Volume/Å ³	1414.9(2)	682.87(14)	3359.6(2)	6768.6(6)
Ζ	4	2	4	8
$\rho_{calc}g/cm^3$	1.543	1.516	1.199	1.156
µ/mm ⁻¹	0.424	0.289	0.213	0.151
F(000)	672.0	320.0	1304.0	2544.0
Crystal size/mm ³	0.13 × 0.12 ×0.11	$0.068 \times 0.056 \times 0.044$	0.056×0.045×0.033	0.150 ×0.140 ×0.110
Radiation	MoKα ($\lambda = 0.71073$)	MoKα ($\lambda = 0.71073$)	MoKα ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2\Overlap range/°	6.056 to 57.86	5.378 to 50.992	5.076 to 57.802	4.492 to 58.792
Index ranges	$ \begin{array}{c} -10 \leq h \leq 9, \ -8 \leq k \leq 7, \ -35 \leq 1 \\ \leq 32 \end{array} $	$-7 \le h \le 7, -8 \le k \le 9, -16 \le l \le 16$	$-30 \le h \le 30, -10 \le k \le 12, -20 \le l \le 21$	$-63 \le h \le 59, -12 \le k \le 9, -17 \le l \le 21$
Reflections collected	15957	4948	39938	22943
Independent reflections	$3260 [R_{int} = 0.0928]$	$2536 [R_{int} = 0.0266]$	$7806 [R_{int} = 0.0824]$	8095 [R _{int} = 0.066]
Data/restraints/parameters	3260/0/204	2536/0/207	7806/0/390	8095/50/407
Goodness-of-fit on F ²	1.102	1.026	1.012	0.954
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0902, wR_2 = 0.2512$	$R_1 = 0.0530, wR_2 = 0.1037$	$R_1 = 0.0560, wR_2 = 0.1362$	$R_1 = 0.0653, wR_2 = 0.1336$
Final R indexes [all data]	$R_1 = 0.1044, wR_2 = 0.2578$	$R_1 = 0.1089, wR_2 = 0.1274$	$R_1 = 0.0925, wR_2 = 0.1523$	$R_1 = 0.2003, wR_2 = 0.1890$
Largest diff. peak/hole / eÅ-3	0.55/-0.40	0.20/-0.24	0.24/-0.29	0.18/-0.28

Table S2: <u>H-bonding data</u>

Interactions	D-H	H····A (Å)	DA (Å)	D-H···A (°)	Symmetry code
C1					
N3-H3N2	0.97(8)	2.36(8)	2.744(8)	102(6)	x,y,z
C1-H1N2	0.93	2.72	3.612(9)	162	-x+2,-y,-z+1
C2-H2N4	0.93	2.86	3.735(10)	158	-x+2,-y,-z+1
С12-Н12О1	0.93	2.65	3.366(10)	134	-x+1,-y+2,-z+1
C2					
N2-H201	0.83(3)	2.32(3)	2.810(3)	118(3)	x, y, z
N2-H2O1	0.83(3)	2.46(3)	3.104(3)	136(3)	-x,-y+1,-z+1
С13-Н13N1	0.93	2.65	3.544(4)	162	-x+2,-y+2,-z+1
C14-H14N5	0.93	2.71	3.610(4)	163	-x+2,-y+2,-z+1
C1.S					
O2-H101O3	0.82(3)	2.02(3)	2.837(3)	176(3)	х, у, z
O3-H102N3	0.86(3)	2.08(3)	2.909(3)	162(3)	x, y, z
С12-Н12О2	0.93	2.62	3.199(3)	121	-x+1,-y+1,-z+1
O2-H100N2	0.83(3)	2.16	2.980(2)	169(3)	x,+y-1,+z
O3-H103N1	0.81(3)	2.37(4)	3.071(2)	146(3)	x,+y-1,+z
C2.S					
O2-H2AN3	0.84(4)	2.17(4)	2.992(4)	166(4)	x, y, z
О2-Н2ВО3	0.92(4)	1.98(4)	2.861(4)	160(4)	x, y, z
O3-H3CN5	0.83(4)	2.22(4)	2.925(4)	143(4)	x, y, z
N4-H4O1	0.86	2.01	2.563(3)	121	x, y, z
O3-H3BN2	0.82(4)	2.16(4)	2.941(4)	162(4)	x,+y+1,+z
С2-Н2О2	0.93	2.64	3.240(5)	123	-x+1,-y+1,-z+2

Spectroscopic characterization of compounds

Figure S1. ¹HNMR (400MHz, CDCl₃) of compound 1.

Figure S2. ¹³CNMR (100 MHz, CDCl₃) of compound 1.

Figure S3. ¹HNMR (400 MHz, d_6 -DMSO) of compound C1.

Figure S4. ¹³CNMR (100 MHz, d_6 -DMSO) of compound C1.

Figure S6. ¹HNMR (400 MHz, CDCl₃) of compound C2.

Figure S7. ¹³CNMR (100 MHz, CDCl₃) of compound C2.

Figure S8. ESI-HRMS spectra of C1. The isotopic pattern at m/z=351.0039can be attributed to [C1.Na⁺] (m/zcalculated = 351.0078).

Figure S9. ESI-HRMS spectra of C2. The isotopic pattern at m/z=312.0692 can be attributed to $[C2.H^+]$ (m/zcalculated = 312.0647).

LOD, binding constant, and stoichiometry

Evaluating absorption and emission data collected after titration gives binding constant and limit of detection. Binding constant calculated by employing

Intercept/slope = Binding constant

Values obtained by linear fitting the importance of $1/\Delta\epsilon$ vs. $1/[F^-]$.

LOD of compounds were obtained by placing the equation

2σ/slope

Here, σ stand for the stander deviation of the regression line and slope obtained by the emission intensity vs. concentration plot.

Figure S10. We are calibrating linear fit curve¹ of emission at 444nmof C1 (Acetonitrile) to obtain (a) Binding constant (3.24×10^3) and (b) LOD (1.45×10^{-6}) .

Figure S11. We are calibrating linear fit curve¹ of absorbance at 309nm of C1 (Acetonitrile) to obtain (a) Binding constant (1.55×10^4) and (b) LOD (2.46×10^{-4}) .

Figure S12. Calibrating linear fit curve¹ of emission at 422nm (water) of **C2**to obtain (a) Binding constant $(3.4x10^3)$, (b) LOD $(9.8x10^{-8})$.

Figure S13. We are calibrating linear fit curve¹ of absorbance at 309nm of C2 to obtain (a) Binding constant (1.58×10^5) and (b) LOD (2.31×10^{-5}) .

Emission titration

Figure S14. Emission spectra of (a) C1 in different solvents (b) C1 in the presence of anions.

Figure S15. (a) Titration of **C1** with F⁻(b) Titration of **C2** with F⁻ in acetonitrile. Emission spectra of C1.

Figure S16. Depiction of change in absorbance of C1 and C2 with F⁻.

Figure S17. Depiction of change in emission intensity of C1 and C2 with F⁻.

Mysterious behavior of C1 in CHCl₃

Figure S18. (a) Image of C1 powder in exposer to long-range light (white fluorescence in nature). FE-SEM and solution phase image support this behavior of C1 in CHCl3.

D2O exchange of compounds in ¹H NMR

Figure S19. ¹HNMR (400MHz, DMSO) spectra of C1 (above) and C1 after D_2O addition (below). The peak at 7.28ppm shows D_2O exchange via reduced integration value.²

Figure S20. ¹HNMR (400MHz, DMSO) spectra of C2 (above) and C2 after D_2O addition (below). The peak at 7.55ppm shows a D_2O exchange reaction.²

¹H and ¹⁹F NMR spectra of complexes

Figure S21. ¹HNMR(400 MHz, CDCl₃) of (a) C1.F⁻ and (b) C2.F⁻ having 20eq of F⁻, up to a range of 13 to 19 ppm.^{2,3}

Figure S22. ¹⁹FNMR (377 MHz, CDCl₃) spectra of C1.F⁻. The desired triplet peak obtained at 144ppm signified that deprotonated fluoride ion $[H_2.F^-]$.³

Figure S23. ¹⁹FNMR (377 MHz, CDCl₃) spectra of C2.F⁻. The desired peak between 130 to 170ppm obtained signified that deprotonated fluoride ion $[H_2.F^-]$ formed.³

Figure S24. ¹⁹FNMR (377 MHz, CDCl₃) spectra of TBAF⁻. The desired peak was obtained at 124.62ppm.

Figure S25. Fluoride anion concentration added versus chemical shift value of (a) C1and (b) C2.

FT-IR spectroscopy

Figure S26. FT-IR plots of (a) C1 and (b) C2.

HR-MS spectrum of complexes

Figure S27. ESI-HRMS spectra of C1.S (m/z calculated for $[C1+F+H_2O-H] = 364.0203$ and obtained 364.1728)

FigureS28. ESI-HRMS spectra of **C2.S** (m/z calculated for [C1+F+Na] = 353.0461 and obtained 353.1451).

DFT calculated optimized structure

Figure S29. DFT optimized **C1**, **C2**, **C1.S**, and **C2.S** using B3LYP /3-21G basis set on the Gaussian09 program.

Titration plot of carboxamide with CN-

Figure S30. Absorption titration spectra of (a) C1 and (b) C2 with CN⁻.

Figure S31. ¹H NMR titration profile of C1 with cyanide anion.

Figure S32. ¹HNMR titration profile of C2 with cyanide anion.

FE-SEM image

Figure S33 FESAM image of (a) C1,(b) C1.S,(c) C2,and (d) C2.S. Sample prepared in DMSO for C1 and C1.S and in water for C2 and C2.S through drop caste method.

References

- (a) J. Wu, G. Lai, Z. Li, Y. Lu, T. Leng, Y. Shen and C. Wang, *Dye. Pigment.*, 2016, 124, 268–276. (b) N. Kaur and G. Jindal, *Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.*, 2019, 223, 1–7.
- 2. N. Luo, J. Li, T. Sun, S. Wan, P. Li, N. Wu, Y. Yan and X. Bao, *RSC Adv.*, 2021, **11**, 10203–10211.
- (a) H. J. Han, J. H. Oh, J. L. Sessler and S. K. Kim, *Chem. Commun.*, 2019, 55, 10876–10879.
 (b) M. Goursaud, P. De Bernardin, A. Dalla Cort, K. Bartik and G. Bruylants, *European J. Org. Chem.*, 2012, 2012, 3570–3574.