In situ decomposition of bromine-substituted catechol to increase the activity of titanium dioxide catalyst for visible-light-induced aerobic conversion of toluene to benzaldehyde

Kana Aitsuki,1 Daiki Fukushima,1 Hiroki Nakahara,1 Kazumune Yo,1 Masahito Kodera,1 Sayuri Okunaka,2 Hiromasa Tokudome,3 Takanori Koitaya4,5 and Yutaka Hitomi*,1,5

1 Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321, Japan
2 Global Zero Emission Research Center (GZR), National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
3 Research Institute, TOTO Ltd., 2-8-1 Honson, Chigasaki, Kanagawa 253-8577, Japan
4 Department of Materials Molecular Science, Institute for Molecular Science, 38 Myodaiji, Okazaki 444-8585, Japan
5 PRESTO/JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
Fig. S1. Raman spectra of (a) bare TiO$_2$, (b) Br$_x$Cat-TiO$_2$-TiO$_2$, and the TiO$_2$ powder obtained after (c) 1, (d) 3, (e) 7, and (f) 15 hours of the reaction using Br$_x$Cat-TiO$_2$.

Fig. S2. EDS spectra of Br$_x$Cat-TiO$_2$ (black line) and re-TiO$_2$ (red line).
Fig. S3. XPS spectra of bare TiO$_2$ (a), Br$_4$Cat-TiO$_2$ (b), and re-Br$_4$Cat-TiO$_2$ (c). Bare TiO$_2$ was measured after the same treatment as Br$_4$Cat-TiO$_2$ using acetone instead of an acetone solution of Br$_4$Cat.