Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting information's

NJC Characterization of the Brønsted acidity of PtSn/Al₂O₃ surfaces by adsorption of 2,6-di-tert-butylpyridine

Quentin Rivet, Jordan Meyet, Mickaël Rivallan, Thibaud Nardin, and David Farrusseng

1.	AMMONIA CONCENTRATION DESORBED DURING NH3 TPD	. 2
2.	NH3 DENSITY EQUATION	. 3
3.	PYRIDINE EQUATION	. 3
4.	IR SPECTRA OBTAINED WITH THE 2,6DTBPYR PROBE MOLECULE	. 4
5.	ALUMINA SUPPORT	. 6
6.	ARTICLE FIGURE WITH %CL AND $\mu MOL~G^{-1}$ UNITS	. 7

The presented study showed the relevance of using 2,6-di-tert-butylpyridne to probe BAS on alumina catalysts.

1. Ammonia concentration desorbed during NH3 TPD

2. NH₃ density equation

Equation for the determination of the density of NH_3 measured.

First the thermal desorption profile is deconvoluted arbitrarily giving an amout of ammonia per gram of sample. Then a number of sites per nm⁻² is calculated:

$$NH_3(site \ nm^{-2}) = \frac{Q_{NH_3} * \text{Na}}{S_{BET}}$$

 Q_{NH3} the NH_3 quantity in mol $g^{\text{-1}}$

 N_{A} the Avogadro constant in $\text{mol}^{\text{-1}}$

 S_{BET} the specific area of the sample in $nm^2\,g^{\text{-}1}$

3. Pyridine equation

To obtain a quantification of sites through IR pyridine, equations based on the Beer-Lambert law are used:

• The first equation is the Beer-Lambert law: $A = \varepsilon_{v} \cdot l \cdot C_{v}$

A is the absorbance

 ϵ_ν the molar extinction coefficient in cm² mol⁻¹ with ν referring to a specific vibration

L the optical path length in cm

 C_{ν} the concentration of the attenuating specie mol $\text{cm}^{\text{-3}}$

• The second and third equation are the derivative means to obtain a quantification of sites either LAS or BAS.

$$l = \frac{m}{S \cdot d} \quad ; \quad BAS \ (mol \ g^{-1}) = \frac{C_{\nu}}{d} = \frac{A_{\nu} \cdot S}{\varepsilon_{\nu} \cdot m}$$

m the mass of the sample in g ; S the surface area of the sample in cm^2 ; d the density of the sample in g cm^{-3}

BAS the number of Brønsted acid site in mol g^{-1} ; A_v the integrated absorbance in cm-1; ε_v the apparent molar extinction coefficient in cm mol⁻¹.

Same calculations as in section 2 are deployed to acquire density of SAB in site nm⁻²

4. IR spectra obtained with the 2,6DTBPyr probe molecule

5. Alumina support IR characterization

Catalyst	BAS	BAS	D _{CI}
	Site nm ⁻²	μmol g ⁻¹	Cl nm ⁻²
Alumina	0.042	11.67	0

6. Article figure with %Cl and $\mu mol~g^{\text{-1}}$ units

Fig. 1 Concentration of NH3 desorbed in regard to the chlorine loading of catalyst

Fig. 4 Concentration of Brønsted acid sites in regard to the chlorine loading of catalyst