Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Ditriphenylenothiophene Butterfly-Shape Liquid Crystals. The Influence of Polyarene Core Topology on Self-Organization, Fluorescence and Photoconductivity

Wen-Jing Deng,^a Shuai Liu,^a Hang Lin,^a Ke-Xiao Zhao,^a Xiao-Yan Bai,^a Ke-Qing Zhao,^{a,*} Ping Hu,^a Bi-Qin Wang,^a Hirosato Monobe,^{b,*}, Bertrand Donnio^{c,*}

(a) College of Chemistry and Materials Science, Sichuan Normal University,

Chengdu, 610066, China. E-mail: kqzhao@sicnu.edu.cn

(b) Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology

(AIST), Ikeda, Osaka, 5638577, Japan. E-mail: monobe-hirosato@aist.go.jp

(c) Institut de Physique et Chimie des Materiaux de Strasbourg (IPCMS), CNRS-Universite de Strasbourg (UMR 7504), Strasbourg, 67034, France. E-mail: bertrand.donnio@ipcms.unistra.fr

Entry	Content	Pages
1	Materials and Methods	S2 - S3
2	Synthesis and Characterization (Schemes S1-S4)	S3 - S14
3	TGA (Figure S1, Tables S1-S2)	S14
4	POM (Figures S2a,b)	S15 - S19
5	DSC (Figure S3, Tables S3-S4)	S19 - S21
6	S/WAXS (Figure S4, Table S5)	S21 - S23
7	SEM (Figure S5)	S24
8	TOF (Figures S6-S7, Tables S6-S9)	S24 - S29
9	Relationship of TOF Charge Carrier Mobility and Mesophase/Molecular structures (Figure S8, Table S10)	S29 – S30
10	DFT (Figure S9, Tables S11-S13)	S30 - S36
11	NMR (Figure S10)	S36 - S53
12	HRMS (Figure S11)	S53 - S57

Contents

1. Materials and Methods

Chemicals. All commercially available starting materials were used directly without further purification. The solvents of air- and moisture-sensitive reactions were carefully distilled from appropriate drying agents before use.

Experimental. Air- and moisture-sensitive reactions were assembled on a Schlenk vacuum line or in a glovebox using oven-dried glassware with a Teflon screw cap under Ar atmosphere. Air- and moisture-sensitive liquids and solutions were transferred by syringe. Reactions were stirred using Teflon-coated magnetic stir bars. Elevated temperatures were maintained using Thermostat-controlled air baths. Organic solutions were concentrated using a rotary evaporator with a diaphragm vacuum pump.

Analytical. ¹H-NMR/¹³C NMR spectra were recorded using a Varian UNITY INOVA 400/100 MHz or Bruker 600 MHz spectrometers in CDCl₃, and TMS as the internal standard. High-resolution mass spectra (HRMS) spectra were recorded at the Bruker Fourier Transform High Resolution Mass Spectrometry (solariX XR) with MALDI as the ion source. Elemental analyses (EA) were performed on a Vario Micro Select (Elementar Company, German). The thermal gravimetrical analysis (TGA) was measured on a TA-TGA Q500 instrument with heating rate of 20 °C/min in N₂ atmosphere. The phase transition temperatures and enthalpy changes were investigated using a TA-DSC Q100 differential scanning calorimeter (DSC) under N₂ atmosphere with heating or cooling rate of 10 °C/min. Liquid crystalline optical textures were observed and recorded on an Olympus BH2 Polarized Optical Microscope equipped with a Mettler FP82HT hot-stages of which temperatures were controlled by XPR-201 and Mettler FP90. Temperature-variation SAXS (small-angle X-ray scattering) and WAXS (wide-angle X-ray scattering) experiments on Rigaku Smartlab. UV/Vis. absorption spectra were recorded on a Perkin Elmer Lambda 950 spectrophotometer at room temperature. Fluorescence was measured on a HORIBA Fluoromax-4p, and the quantum yields were measured by a HORIB-F-3029 Integrating Sphere, HORIBA, Kyoto, Japan.

Photocurrent time-of-flight (TOF) technique uses N₂ gas laser (KEN-1520, Usho, 600 ps pulse width, $\lambda = 337$ nm) and hot stage to measure compound electron and hole mobilities. The liquid crystalline sample cell with indium-tin-oxide (ITO) electrodes was mounted on a handmade hot stage, and electric bias was applied by dry cell batteries. The polarity (20 to 50 kV/cm) electric field is applied, a positive or negative charge carriers hopping through the self-organized aligned sample, causing displacement photocurrent, which was detected on a digital oscilloscope (DSO5052A, Agilent Technology) with a commercially available current amplifier (DHPCA-100, FEMTO). Thickness of the cell used for measurements was in range of 15~20µm.

The cells were filled with the sample in its isotropic liquid state by capillary forces, and then cooled down to the columnar mesophase. POM images showed a low-birefringent textures with homeotropic domains, and the laser focused on a spot with homeotropic aligned sample area.

2. Synthesis and Characterization

The synthesis of 4-bromobenzene-1,2-diol (1),¹ 4-bromo-1,2-bis(alkoxy)benzene $(2\mathbf{a-c})$,¹ 2-(3,4-bis(alkoxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane $(3\mathbf{a-c})$,²,³ 2,3,7,8-tetrabromodibenzothiophene (4),⁴ 3,3',4,4'-tetrakis(alkoxy)-1,1'-biphenyl $(5\mathbf{a-c})$, 2-bromo-3',4,4',5-tetrakis(alkoxy)-1,1'-biphenyl $(6\mathbf{a-c})$ and 4,4,5,5-tetramethyl-2-(3',4,4',5-tetrakis(alkoxy)-[1,1'-biphenyl]-2-yl)-1,3,2-dioxaborolane $(7\mathbf{a-c})^5$ were performed according to reported methods. All other materials were used as purchased without further purification.

2.1 Synthesis of the phenylboronic ester derivatives

Scheme S1. Preparation of the phenylboronic esters.

¹ K. Q. Zhao, Y. Gao, W. H. Yu, P. Hu, B. Q. Wang, B. Heinrich and B. Donnio. Discogens Possessing Aryl Side Groups Synthesized by Suzuki Coupling of Triphenylene Triflates and Their Self-Organization Behavior. *Eur. J. Org. Chem.*, 2016, 2802-2814.

² C. X. Liu, H. Wang, J. Q. Du, K. Q. Zhao, P. Hu, B. Q. Wang, H. Monobe, B. Heinrich, and B. Donnio. Molecular Design of Benzothienobenzothiophene-Cored Columnar Mesogens: Facile Synthesis, Mesomorphism, and Charge Carrier Mobility, *J. Mater. Chem. C*, 2018, **6**, 4471-4478.

³ T. Ma, H. F. Wang, K. Q. Zhao, B. Q. Wang, P. Hu, H. Monobe, B. Heinrich and B. Donnio. Nonlinear Nonacenes with a Dithienothiophene Substructure: Multifunctional Compounds that Act as Columnar Mesogens, Luminophores, π Gelators, and p-Type Semiconductors, *ChemPlusChem*, 2019, **84**, 1439-1448.

⁴ T. Oyama, T. Mori, T. Hashimoto, M. Kamiya, T. Ichikawa, H. Komiyama, Y. S. Yang and T. Yasuda, High-Mobility Regioisomeric Thieno[*f*,*f*']bis[1]benzothiophenes: Remarkable Effect of *Syn/Anti* Thiophene Configuration on Optoelectronic Properties, Self-Organization, and Charge-Transport Functions in Organic Transistors. *Adv. Electron. Mater.*, 2018, **4**, 1700390.

⁵ J. F. Hang, H. Lin, K. Q. Zhao, P. Hu, B. Q. Wang, H. Monobe, C. H. Zhu and B. Donnio, Butterfly Mesogens Based on Carbazole, Fluorene or Fluorenone: Mesomorphous, Gelling, Photophysical, and Photoconductive Properties. *Eur. J. Org. Chem.*, 2021, **2021**, 1989-2002.

4-Bromobenzene-1,2-diol (1): Into a solution of NaOH (17.30 g, 10.40 mol) in H₂O (220 mL) was added 5bromosalicylaldehyde (80.00 g, 0.40 mol), the mixture then heated at 60 °C until all reactants dissolved. The clarified mixture was cooled by an ice-water bath, and 30% of H₂O₂ (51 mL) was added slowly by a constantpressure dropping funnel. The resulting solution was stirred at room temperature for 2 h. To the reaction mixture, was added NaCl to saturated, and extracted with Et₂O. The combined organic layers were dried over anhydrous MgSO₄ and concentrated in vacuum to give **1** as yellow oil (9.80 g, 93 %).

4-Bromo-1,2-bis(alkoxy)benzene (**2**): **1** (10.58 mmol, 1.0 equiv.), potassium carbonate (52.90 mmol, 5.0 equiv.), zinc powder (21.16 mmol, 2.0 equiv.) were weighed in a round bottom flask. Subsequently, DMF (60 mL) and 1-bromoalkane (26.45 mmol, 2.5 equiv.) were added. The resulting solution was stirred at 90°C for 48 h. The reaction mixture was cooled and poured into ice-water, dilute hydrochloric acid was added until acidic pH. Then, the precipitated solid was filtered, washed with MeOH and dried. The crude product was purified by column chromatography on silica gel with dichloromethane/petroleum ether (1/3) mixture as eluent to give liquid or white solid **2** in yield of 75-78%.

2-(3,4-Bis(alkoxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3). 2 (1.0 equiv.), bis(pinacolato)diboron (2.0 equiv.), CH₃COOK (4.0 equiv.), Pd(dppf)Cl₂ (8 mol%), 1,4-dioxane (0.08 M) were added in a round bottom flask. The resulting solution was stirred under nitrogen at 90°C for 24 h. The reaction mixture was cooled to room temperature and extracted with dichloromethane. The combined organic layers were dried over anhydrous MgSO₄ and concentrated in vacuum. The crude product was purified by column chromatography on silica gel with dichloromethane/petroleum ether (1/2) mixture as eluent to give **3** in yield of 75-92%.

2-(3,4-Bis(dodecyloxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**3a**): Following the general procedure, substrate **2a** (2.0 g, 3.80 mmol) was converted to the white solid **3a** (2.0 g, 92%). ¹H NMR (CDCl₃, TMS, 400 MHz) δ (ppm): 7.38 (d, *J* = 8.0 Hz, 1H, ArH), 7.29 (s, 1H, ArH), 6.87 (d, *J* = 8.0 Hz, 1 H, ArH), 4.04-3.99 (m, 4H, OCH₂), 1.85-1.78 (m, 4H, CH₂), 1.47-1.42 (m, 4H, CH₂), 1.35-1.26 (m, 44H, CH₂), 0.88 (t, *J* = 6.8 Hz, 6H, CH₃).

2-(3,4-Bis(tetradecyloxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**3b**): Following the general procedure, substrate **2b** (4.0 g, 6.88 mmol) was converted to the white solid **3b** (2.86 g, 66%). ¹H NMR (CDCl₃, TMS, 400 MHz) δ (ppm): 7.38 (d, *J* = 8.0 Hz, 1 H, ArH), 7.29 (s, 1H, ArH), 6.87 (d, *J* = 8.0 Hz, 1

H, ArH), 4.04-3.99 (m, 4H, OCH₂), 1.85-1.78 (m, 4H, CH₂), 1.47-1.43 (m, 4H, CH₂), 1.38-1.21 (m, 52H, CH₂), 0.88 (t, *J* = 6.8 Hz, 6H, CH₃).

2-(3,4-Bis(hexadecyloxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**3c**): Following the general procedure, substrate **2c** (5.0 g, 7.84 mmol) was converted to the white solid **3c** (4.55 g, 85%). ¹H NMR (CDCl₃, TMS, 400 MHz) δ (ppm): 7.38 (d, *J* = 8.0 Hz, 1 H, ArH), 7.29 (s, 1H, ArH), 6.87 (d, *J* = 8.0 Hz, 1 H, ArH), 4.04-3.99 (m, 4H, OCH₂), 1.85-1.78 (m, 4H, CH₂), 1.48-1.43 (m, 4H, CH₂), 1.35-1.26 (m, 60H, CH₂), 0.88 (t, *J* = 6.8 Hz, 6H, CH₃).

2.2 Synthesis of the DTPTBn

2,3,7,8-Tetrabromodibenzothiophene (**4**): Dibenzothiophene (1.00 g, 5.40 mmol) was dissolved in dry chloroform (40 mL), and bromine (6.19 g, 37.90 mmol) diluted with chloroform (20 mL) was added slowly by a constant-pressure dropping funnel. The resulting solution was stirred under heating reflux for 24 h. The reaction mixture was quenched with aqueous solution of NaHSO₃. Filtration gave the product as a white solid (3.14 g, 86%).

Scheme S2. Preparation of 2,3,6,7,13,14,17,18-octa(alkoxy)ditriphenylenothiophene butterfly-shape molecules.

2,3,7,8-Tetra(3,4-di(alkoxy)phenyl)dibenzothiophene (**T***n*). Under argon, **4** (0.20 mmol, 1.0 equiv.), 3,4di(alkoxyphenyl)borate (1.00 mmol, 5.0 equiv.), K_2CO_3 (10.00 mmol, 50.0 equiv.), Pd(PPh_3)_4 (0.04 mmol, 20 mol%), THF/H₂O (4/1, 15 mL) were added in a reaction tube. The resulting solution was stirred at 70°C for 48 h. The reaction mixture was cooled to room temperature and extracted with dichloromethane. The combined organic layers were dried over anhydrous MgSO₄ and concentrated in vacuum. The residue was purified by column chromatography on silica gel with dichloromethane/petroleum ether (1/2) mixture as eluent to give **T***n* in yield of 85-97%.

2,3,7,8-Tetra(3,4-di(dodecyloxy)phenyl)dibenzothiophene (**T12**): Following the general procedure, substrate **4** (100.0 mg, 0.20 mmol) was converted to the white solid **T12** (384.3 mg, 97%). ¹**H NMR** (CDCl₃, TMS, 400 MHz) δ (ppm): 8.16 (s, 2H, ArH), 7.88 (s, 2H, ArH), 6.78-6.86 (m, 8H, ArH), 6.69 (s, 4H, ArH), 3.97 (t, J = 6.6 Hz, 8H, OCH₂), 3.72 (t, J = 6.6 Hz, 8H, OCH₂), 1.85-1.80 (m, 8H, CH₂), 1.70-1.63 (m, 8H, CH₂), 1.50-1.43 (m, 8H, CH₂), 1.37-1.27 (m, 136H, CH₂), 0.89-0.86 (m, 24H, CH₃). ¹³**C NMR** (CDCl₃, 101 MHz) δ (ppm): 148.42, 148.33, 147.96, 147.88, 139.52, 138.80, 137.48, 134.50, 134.46, 134.12, 124.12, 123.16, 122.05, 116.02, 115.88, 113.26, 113.12, 69.24, 69.17, 69.10, 69.05, 31.96, 29.79, 29.75, 29.72, 29.70, 29.54, 29.48, 29.43, 29.41, 29.36, 29.35, 29.13, 26.09, 26.05, 22.72, 14.16. **Elemental Analysis** (C₁₃₂H₂₁₆O₈S, MW 1963.23): calc. C 80.76%, H 11.09%, S 1.63%; found C 80.63%, H 11.00%, S 1.61%. **HRMS** (ESI) calcd for C₁₃₂H₂₁₆O₈S [M]⁺⁺m/z: 1962.6249 (100.0%), 1961.6216 (70.0%), 1963.6283 (40.9%), 1964.6317 (15.8%); found: 1962.6233 (100%), 1961.6199 (66.21%), 1963.6271 (85.52%), 1964.6314 (48.27%);.

2,3,7,8-Tetra(3,4-di(tetradecyloxy)phenyl)dibenzothiophene (**T14**): Following the general procedure, substrate **4** (100.0 mg, 0.20 mmol) was converted to the white solid **T14** (371.7 mg, 85%). ¹**H NMR** (CDCl₃, TMS, 400 MHz) δ (ppm): 8.16 (s, 2H, ArH), 7.88 (s, 2H, ArH), 6.86-6.79 (m, 8H, ArH), 6.69 (s, 4H, ArH), 3.97 (t, *J* = 6.6 Hz, 8H, OCH₂), 3.71 (t, *J* = 6.6 Hz, 8H, OCH₂), 1.85-1.78 (m, 8H, CH₂), 1.71-1.63 (m, 8H, CH₂), 1.48-1.44 (m, 8H, CH₂), 1.37-1.26 (m, 168H, CH₂), 0.89-0.86 (m, 24H, CH₃). ¹³**C NMR** (101 MHz, CDCl₃) δ (ppm): 148.48, 148.40, 148.02, 147.94, 139.53, 138.81, 137.50, 134.51, 134.17, 124.11, 123.14, 122.08, 116.14, 116.01, 113.39, 113.25, 69.29, 69.22, 69.15, 69.10, 31.94, 29.78, 29.76, 29.74, 29.69, 29.52, 29.46, 29.39, 29.15, 26.09, 26.05, 22.70, 14.12. **Elemental Analysis** (C₁₄₈H₂₄₈O₈S, MW 2187.66): calc. C 81.26%, H 11.43%, S 1.47%; found C 81.17%, H 11.23%, S 1.54%. **HRMS** (ESI) calcd for C₁₄₈H₂₄₈O₈SNa[M+Na]⁺⁺ m/z: 2209.8651 (100%), 2210.8685 (79.5%), 2208.8618 (62.5%), 2211.8718 (34.5%); found: 2209.8630 (100%), 2210.8688 (85.80%), 2208.8574 (48.74%), 2211.8740 (40.74%).

2,3,7,8-Tetra(3,4-di(hexadecyloxy)phenyl)dibenzothiophene (**T16**): Following the general procedure, substrate **4** (100.0 mg, 0.20 mmol) was converted to the white solid **T16** (441.6 mg, 92%). ¹**H NMR** (CDCl₃, TMS, 400 MHz) δ (ppm): 8.16 (s, 2H, ArH), 7.88 (s, 2H, ArH), 6.86-6.77 (m, 8H, ArH), 6.69 (s, 4H, ArH), 3.97 (t, *J* = 6.6 Hz, 8H, OCH₂), 3.72 (t, *J* = 6.6 Hz, 8H, OCH₂), 1.85-1.78 (m, 8H, CH₂), 1.71-1.65 (m, 8H,

CH₂), 1.50-1.43 (m, 8H, CH₂), 1.37-1.26 (m, 200H, CH₂), 0.88 (t, *J* = 6.4 Hz, 24H, CH₃). ¹³C NMR (CDCl₃, 101 MHz) δ(ppm): 148.42, 148.34, 147.97, 147.89, 139.52, 138.81, 137.48, 134.50, 134.47, 134.12, 124.12, 123.15, 122.05, 116.04, 115.89, 113.27, 113.13, 69.25, 69.17, 69.10, 69.05, 31.95, 29.79, 29.77, 29.71, 29.55, 29.54, 29.48, 29.41, 29.38, 29.36, 29.13, 26.10, 26.06, 22.72, 14.16. **Elemental Analysis** (C₁₆₄H₂₈₀O₈S, MW 2412.10): calc. C 81.66%, H 11.70%, S 1.33%; found C 81.67%, H 11.40%, S 1.32%. **HRMS** (ESI) calcd for C₁₆₄H₂₈₀O₈S [M]⁺⁺ m/z: 2411.1258 (100.0%), 2412.1291 (64.0%), 2410.1224 (56.4%), 2413.1325 (44.9%); found: 2411.1240 (100.0%), 2412.1274 (89.70%), 2410.1250 (34.56%), 2413.1346 (34.56%).

2,3,6,7,13,14,17,18-Octa(alkoxy)ditriphenylenethiophene (**DTPTB***n*). To a stirred solution of **T***n* (1.0 equiv.) in CH_2Cl_2 (0.002 M), a solution of FeCl₃ (6.0 equiv.) in CH_3NO_2 (0.02 M) was added. The resulting solution was stirred at room temperature until completion of the reaction. The reaction mixture was quenched with methanol and extracted with dichloromethane. The combined organic layers were dried over anhydrous MgSO₄ and concentrated in vacuum. The residue was purified by column chromatography on Al_2O_3 with dichloromethane /petroleum ether (1/2.5) mixture as eluent to give **DTPTB***n* in yield of 60-65%.

2,3,6,7,13,14,17,18-Octa(dodecyloxy)ditriphenylenothiophene (**DTPTB12**): Following the general procedure, substrate **T12** (100.0 mg, 0.05 mmol) was converted to the yellow solid **DTPTB12** (62.9 mg, 63%). ¹**H NMR** (CDCl₃, TMS, 400 MHz) δ (ppm): 8.94 (s, 2H, ArH), 8.60 (s, 2H, ArH), 8.16 (s, 2H, ArH), 7.79 (s, 2H, ArH), 7.65 (s, 2H, ArH), 7.62 (s, 2H, ArH), 4.42 (t, *J* = 6.0 Hz, 4H, OCH₂), 4.23-4.17 (m, 12H, OCH₂), 2.10-1.94 (m, 16H, CH₂), 1.74-1.60 (m, 16H, CH₂), 1.52-1.25 (m, 128H, CH₂), 0.91-0.84 (m, 24H, CH₃). **Elemental Analysis** (C₁₃₂H₂₁₂O₈S, MW 1959.20): calc. C 80.92%, H 10.91%, S 1.64%; found C 80.60%, H 10.64%, S 1.67%. **HRMS** (ESI) calcd for C₁₃₂H₂₁₂O₈S [M]⁺⁺ m/z: 1958.5936 (100%), 1957.5903 (70.0%), 1959.5970 (40.9%), 1960.6004 (24.0%); found: 1958.5920 (100%), 1957.5910 (58.11%), 1959.5910 (77.70%), 1960.6030 (33.78%).

2,3,6,7,13,14,17,18-Octa(tetradecyloxy)ditriphenylenothiophene (**DTPTB14**): Following the general procedure, substrate **T14** (100.0 mg, 0.05 mmol) was converted to the green solid **DTPTB14** (60.0 mg, 60%). ¹**H NMR** (CDCl₃, TMS, 400 MHz) δ (ppm): 8.98 (s, 2H, ArH), 8.63 (s, 2H, ArH), 8.18 (s, 2H, ArH), 7.81 (s, 2H, ArH), 7.67 (s, 2H, ArH), 7.64 (s, 2H, ArH), 4.41 (t, *J* = 6.0 Hz, 4H, OCH₂), 4.23-4.18 (m, 12H, OCH₂), 2.07-1.97 (m, 16H, CH₂), 1.71-1.60 (m, 16H, CH₂), 1.47-1.23 (m, 160H, CH₂), 0.90-0.84 (m, 24H, CH₃). **Elemental Analysis** (C₁₄₈H₂₄₄O₈S, MW 2183.63): calc. C 81.41%, H 11.26%, S 1.47%; found C 80.95%, H 10.85%, S 1.56%. **HRMS** (ESI) calcd for C₁₄₈H₂₄₄O₈S [M]⁺⁺ m/z: 2182.8441 (100%), 2183.8474 (79.5%), 2181.8407 (62.5%), 2184.8508 (34.5%); found: 2182.8421 (100%), 2183.8493 (82.87%), 2181.8492 (34.27%), 2184.8632 (46.42%).

2,3,6,7,13,14,17,18-Octakis(hexadecyloxy)ditriphenylenethiophene (**DTPTB16**): Following the general procedure, substrate **T16** (100.0 mg, 0.04 mmol) was converted to the orange solid **DTPTB16** (65.0 mg, 65%). ¹**H NMR** (CDCl₃, TMS, 600 MHz) δ (ppm): 9.02 (s, 2H, ArH), 8.67 (s, 2H, ArH), 8.19 (s, 2H, ArH), 7.84 (s, 2H, ArH), 7.69 (s, 2H, ArH), 7.67 (s, 2H, ArH), 4.41 (t, *J* = 6.0 Hz, 4H, OCH₂), 4.26-4.20 (m, 12H, OCH₂), 2.05-1.96 (m, 16H, CH₂), 1.70-1.67 (m, 4H, CH₂), 1.62-1.58 (m, 12H, CH₂), 1.51-1.43 (m, 16H, CH₂), 1.40-1.23 (m, 176H, CH₂), 0.89-0.85 (m, 24H, CH₃). **Elemental Analysis** (C₁₆₄H₂₇₆O₈S, MW 2408.06): calc. C 81.80%, H 11.55%, S 1.33%; found C 81.44%, H 11.28%, S 1.37%. **HRMS** (ESI) calcd for C₁₆₄H₂₇₆O₈S [M]⁺⁺ m/z: 2407.0945 (100%), 2408.0978 (64.0%), 2406.0911 (56.4%), 2409.1012 (44.9%); found: 2407.0939 (100%), 2408.0996 (92.35%), 2406.0876 (37.58%), 2409.1058 (40.94%).

2.3 Synthesis of the biphenylboronic ester derivatives

Scheme S3. Preparation of the biphenylboronic esters.

3,3',4,4'-Tetrakis(alkoxy)-1,1'-biphenyl (**5**): [1,1'-biphenyl]-3,3',4,4'-tetraol (1.0 equiv.), potassium carbonate (30.0 equiv.), zinc powder (4.0 equiv.) were weighed into a round bottom flask. Subsequently, DMF (0.1 M) and 1-bromoalkane (4.5 equiv.) were added. The resulting solution was stirred at 100°C for 24 h. The reaction mixture was cooled and poured into ice-water, dilute hydrochloric acid was added until acidic pH. Then, the precipitated solid was filtered and dried. The crude product was purified by column chromatography on silica gel with dichloromethane:petroleum ether (1:3) mixture as eluent. Finally, recrystallized from ethyl acetate and ethanol gave **5** in yield of 55-88%.

3,3',4,4'-Tetrakis(octyloxy)-1,1'-biphenyl (**5a**): Following the general procedure, [1,1'-biphenyl]-3,3',4,4'- tetraol (1.19 g, 5.47 mmol) was converted to the white solid **5a** (2.00 g, 55%). ¹**H NMR** (CDCl₃, TMS, 400

MHz) δ (ppm):7.09-7.05 (m, 4H, ArH), 6.93 (d, J = 8.0 Hz, 2H, ArH), 4.08-4.01 (m, 8H, OCH₂), 1.88-1.81 (m, 8H, CH₂), 1.53-1.46 (t, J = 8.0 Hz, 8H, CH₂), 1.35-1.30 (m, 32H, CH₂), 0.90 (t, J = 6.2 Hz, 12H, CH₃). 3,3',4,4'-Tetrakis(decyloxy)-1,1'-biphenyl (**5b**): Following the general procedure, [1,1'-biphenyl]-3,3',4,4'-tetraol (0.40 g, 1.83 mmol) was converted to the white solid **5b** (0.86 g, 60%). ¹H NMR (CDCl₃, TMS, 400 MHz) δ (ppm): 7.08-7.04 (m, 4H, ArH), 6.92 (d, J = 8.0 Hz, 2H, ArH), 4.08-4.01 (m, 8H, OCH₂), 1.88-1.81 (m, 8H, CH₂), 1.53-1.46 (m, 8H, CH₂), 1.38-1.26 (m, 48H, CH₂), 0.89 (t, J = 6.5 Hz, 12H, CH₃). 3,3',4,4'-Tetrakis(dodecyloxy)-1,1'-biphenyl (**5c**): Following the general procedure, [1,1'-biphenyl]-3,3',4,4'-tetraol (1.20 mg, 5.50 mmol) was converted to the white solid **5a** (3.78 g, 88%). ¹H NMR (CDCl₃, TMS, 400 MHz) δ (ppm): 7.06 (s, 2H, ArH), 7.05 (d, J = 4.0 Hz, 2H, ArH), 6.92 (d, J = 8.1 Hz, 2H, ArH), 4.07-4.00 (m, 8H, OCH₂), 1.85-1.80 (m, 8H, CH₂), 1.50-1.26 (m, 72H, CH₂), 0.88 (t, J = 6.6 Hz, 12H, CH₃).

2-Bromo-3',4,4',5-tetrakis(alkoxy)-1,1'-biphenyl (6). 5 (1.0 equiv.) was dissolved in dry chloroform (0.015 M), and bromine (1.0 equiv.) diluted with chloroform (0.1 M) was added slowly by a constant-pressure dropping funnel. The resulting solution was stirred at room temperature until completion of the reaction. The reaction mixture was quenched with aqueous sodium hydrogen sulfite and extracted with dichloromethane. The combined organic layers were dried over anhydrous MgSO₄ and concentrated in vacuum. The crude product was purified by column chromatography on silica gel with dichloromethane/petroleum ether (1/2) mixture as eluent. Finally, recrystallized from ethyl acetate and ethanol gave **6** in yield of 90-97%.

2-Bromo-3',4,4',5-tetrakis(octyloxy)-1,1'-biphenyl (**6a**): Following the general procedure, **5a** (1.50 g, 2.25 mmol) was converted to the white solid **6a** (1.68 g, 90%). ¹**H NMR** (CDCl₃, TMS, 400 MHz) δ(ppm): 7.10 (s, 1H, ArH), 6.94 (s, 1H, ArH), 6.89 (s, 2H, ArH), 6.84 (s, 1H, ArH), 4.04-3.95(m, 8H, OCH₂), 1.84-1.80 (m, 8H, CH₂), 1.48-1.29 (m, 40H, CH₂), 0.89-0.86 (m, 12H, CH₃).

2-Bromo-3',4,4',5-tetrakis(decyloxy)-1,1'-biphenyl (**6b**): Following the general procedure, **5b** (0.63 g, 0.81 mmol) was converted to the white solid **6b** (0.65 g, 94%). ¹**H NMR** (CDCl₃, TMS, 400 MHz) δ(ppm): 7.10 (s, 1H, ArH), 6.95 (s, 1H, ArH), 6.89 (s, 2H, ArH), 6.84 (s, 1H, ArH), 4.03-3.97 (m, 8H, OCH₂), 1.84-1.81 (m, 8H, CH₂), 1.48-1.27 (m, 56H, CH₂), 0.88 (t, *J* = 5.3 Hz, 12H, CH₃).

2-Bromo-3',4,4',5-tetrakis(dodecyloxy)-1,1'-biphenyl (**6c**): Following the general procedure, **5c** (3.29 g, 3.70 mmol) was converted to the white solid **6c** (3.50 g, 97%). **¹H NMR** (CDCl₃, TMS, 400 MHz) δ(ppm): 7.10 (s, 1H, ArH, 6.94 (s, 1H, ArH), 6.89 (s, 2H, ArH), 6.84 (s, 1H, ArH), 4.04-3.96 (m, 8H, OCH₂), 1.84-1.80 (m, 8H, CH₂), 1.47-1,42 (m, 8H, CH₂), 1.35-1.26 (m, 64H, CH₂), 0.88 (t, *J* = 6.1 Hz, 12H, CH₃).

4,4,5,5-Tetramethyl-2-(3',4,4',5-tetrakis(alkoxy)-[1,1'-biphenyl]-2-yl)-1,3,2-dioxaborolane (7). **6** (1.0 equiv.), bis(pinacolato)diboron (1.5 equiv.), CH₃COOK (3.0 equiv.), Pd(dppf)Cl₂ (5 mol%), 1,4-dioxane (0.06 M) were added in a round bottom flask. The resulting solution was stirred under nitrogen at 90°C for 24 h. The reaction mixture was cooled to room temperature and extracted with dichloromethane. The combined organic layers were dried over anhydrous MgSO₄ and concentrated in vacuum. The crude product was purified by column chromatography on silica gel with dichloromethane:petroleum ether (1:3) mixture as eluent. Finally, recrystallized from ethyl acetate and methanol gave 7 in yield of 40-82%.

4,4,5,5-Tetramethyl-2-(3',4,4',5-tetrakis(octyloxy)-[1,1'-biphenyl]-2-yl)-1,3,2-dioxaborolane (7a):
Following the general procedure, 6a (4.00 g, 5.37 mmol) was converted to the white solid 7a (3.51 g, 82%).
¹H NMR (CDCl₃, TMS, 400 MHz) δ(ppm): 7.20 (s, 1H, ArH), 6.92 (s, 1H, ArH), 6.85 (s, 3H, ArH), 4.06-3.99 (m, 8H, OCH₂), 1.83-1.80 (m, 8H, CH₂), 1.48-1.46 (m, 8H, CH₂), 1.28-1.19 (m, 32H, CH₂), 1.19 (s, 12H, CH₃), 0.88 (d, *J* = 3.7 Hz, 12H, CH₃).

4,4,5,5-Tetramethyl-2-(3',4,4',5-tetrakis(decyloxy)-[1,1'-biphenyl]-2-yl)-1,3,2-dioxaborolane (7b): Following the general procedure, **6b** (1.20 g, 1.40 mmol) was converted to the white solid **7b** (1.27 g, 40%). ¹**H NMR** (CDCl₃, TMS, 400 MHz) δ (ppm): 7.21 (s, 1H, ArH), 6.92 (s, 1H, ArH), 6.89 (s, 3H, ArH), 4.05-4.00 (m, 8H, OCH₂), 1.85-1.80 (m, 8H, CH₂), 1.48-1.27 (m, 56H, CH₂), 1.19 (s, 12H, CH₃), 0.88 (t, *J* = 5.7 Hz, 12H, CH₃).

4,4,5,5-Tetramethyl-2-(3',4,4',5-tetrakis(dodecyloxy)-[1,1'-biphenyl]-2-yl)-1,3,2-dioxaborolane (7c): Following the general procedure, **6c** (2.60 g, 2.70 mmol) was converted to the white solid **7c** (1.44 g, 53%). ¹**H NMR** (CDCl₃, TMS, 400 MHz) δ (ppm): 7.21 (s, 1H, ArH), 6.92 (s, 1H, ArH), 6.85 (s, 3H, ArH), 4.05-4.00 (m, 8H, OCH₂), 1.85-1.80 (m, 8H, CH₂), 1.35-1.26 (m, 72H, CH₂), 1.19 (s, 12H, CH₃), 0.88 (t, *J* = 6.3 Hz, 12H, CH₃).

2.4 Synthesis of the DTPTAn

Scheme S4. Preparation of the 2,3,6,7,14,15,18,19-octakis(alkoxy)ditriphenylenethiophene.

2,3,6,7,14,15,18,19-Octakis(alkoxy)ditriphenylenothiophene (**DTPTA***n*). Under argon, 4,6dibromodibenzothiophene (1.0 equiv.), 1,1'-biphenyl-2-borate (2.5 equiv.), K_2CO_3 (30.0 equiv.), Pd(PPh_3)_4 (20 mol%), THF/H₂O (4/1, 0.01 M) were added in a reaction tube. The resulting solution was stirred at 70°C for 48 h. The reaction mixture was cooled to room temperature and extracted with dichloromethane. The combined organic layers were dried over anhydrous MgSO₄ and concentrated in vacuum. The residue was purified by column chromatography on silica gel with dichloromethane/petroleum ether (1/3) mixture as eluent to give white solid **D***n* in yield of 79-90%.

4,6-Bis(3',4,4',5-tetrakis(octyloxy)-[1,1'-biphenyl]-2-yl)dibenzo[b,d]thiophene (**D8**): Following the general procedure, substrate 4,6-dibromodibenzothiophene (50.0 mg, 0.15 mmol) was converted to the white solid **D8** (200.0 mg, 90%). **¹H NMR** (CDCl₃, TMS, 400 MHz) δ(ppm): 7.95 (d, *J* = 8.0 Hz, 2H, ArH), 7.28 (d, *J* = 8.0 Hz, 2H, ArH), 7.04 (d, *J* = 4.0 Hz, 2H, ArH), 6.99 (s, 2H, ArH), 6.95 (s, 2H, ArH), 6.69 (s, 2H, ArH), 6.63 (s, 2H, ArH), 6.49 (s, 2H, ArH), 4.08 (t, *J* = 6.0 Hz, 4H, OCH₂), 3.98 (t, *J* = 6.0 Hz, 4H, OCH₂), 3.85 (t, *J* = 6.0 Hz, 4H, OCH₂), 3.30 (s, 4H, OCH₂), 1.88-1.80 (m, 8H, CH₂), 1.74-1.69 (m, 4H, CH₂), 1.50-1.09 (m, 84H, CH₂), 0.90-0.85 (m, 24H, CH₃). ¹³**C NMR** (CDCl₃, 101 MHz) δ (ppm): 148.83, 147.86, 147.75, 147.46, 140.83, 137.01, 135.81, 133.74, 133.58, 130.82, 128.43, 124.40, 121.13, 119.73, 115.44, 115.15, 112.85, 69.35, 69.28, 69.01, 68.67, 31.89, 31.84, 31.82, 29.43, 29.42, 29.39, 29.36, 29.33, 29.31, 29.29, 29.27, 28.93,

26.11, 26.01, 25.71, 22.72, 22.71, 22.69, 22.67, 14.15, 14.14, 14.12.

4,6-Bis(3',4,4',5-tetrakis(decyloxy)-[1,1'-biphenyl]-2-yl)dibenzo[b,d]thiophene (D10): Following the general procedure, substrate 4,6-dibromodibenzothiophene (50.0 mg, 0.15 mmol) was converted to the white solid **D10** (200.0 mg, 79%). ¹**H NMR** (CDCl₃, TMS, 400 MHz) δ(ppm): 7.95 (d, *J* = 7.9 Hz, 2H, ArH), 7.28 (d, J = 7.6 Hz, 2H, ArH), 7.03 (d, J = 7.3 Hz, 2H, ArH), 6.99 (s, 2H, ArH), 6.96 (s, 2H, ArH), 6.68 (s, 2H, ArH), 6.63 (s, 2H, ArH), 6.50 (s, 2H, ArH), 4.08 (t, *J* = 6.6 Hz, 4H, OCH₂), 3.98 (t, *J* = 6.5 Hz, 4H, OCH₂), 3.85 (t, J = 6.6 Hz, 4H, OCH₂), 3.31 (s, 4H, OCH₂), 1.88-1.79 (m, 8H, CH₂), 1.74-1.70 (m, 4H, CH₂), 1.50-1.11 (m, 116H, CH₂), 0.90-0.85 (m, 24H, CH₃). ¹³C NMR (CDCl₃, 101 MHz) δ (ppm): 148.83, 147.86, 147.74, 147.46, 140.83, 137.01, 135.81, 133.73, 133.57, 130.81, 128.44, 124.39, 121.12, 119.73, 115.43, 115.14, 112.83, 69.35, 69.28, 69.01, 68.67, 31.96, 31.94, 31.93, 31.92, 29.68, 29.67, 29.63, 29.61, 29.59, 29.49, 29.47, 29.43, 29.39, 29.37, 29.30, 28.93, 26.12, 26.01, 25.72, 22.73, 22.71, 22.70, 14.16, 14.15, 14.14. 4,6-Bis(3',4,4',5-tetrakis(dodecyloxy)-[1,1'-biphenyl]-2-yl)dibenzo[b,d]thiophene (D12): Following the general procedure, substrate 4,6-dibromodibenzothiophene (50.0 mg, 0.15 mmol) was converted to the white solid **D12** (232.4 mg, 81%). ¹**H NMR** (CDCl₃, TMS, 400 MHz) δ(ppm): 7.95 (d, *J* = 8.0 Hz, 2H, ArH), 7.29 (s, 2H, ArH), 7.03 (d, J = 8.0 Hz, 2H, ArH), 6.99 (s, 2H, ArH), 6.96 (s, 2H, ArH), 6.68 (s, 2H, ArH), 6.63 (s, 2H, ArH), 6.50 (s, 2H, ArH), 4.08 (t, J = 6.0 Hz, 4H, OCH₂), 3.98 (t, J = 8.0 Hz, 4H, OCH₂), 3.85 (t, J = 6.0Hz, 4H, OCH₂), 3.31 (s, 4H, OCH₂), 1.88-1.79 (m, 8H, CH₂), 1.73-1.68 (m, 4H, CH₂), 1.52-1.18 (m, 148H, CH₂), 0.89-0.86 (m, 24H, CH₃). ¹³C NMR (CDCl₃, 101 MHz) δ (ppm): 148.84, 147.87, 147.75, 147.46, 140.83, 137.01, 135.81, 133.74, 133.58, 130.82, 128.44, 124.39, 121.13, 119.73, 115.45, 115.16, 112.86, 69.36, 69.29, 69.02, 68.68, 31.96, 31.95, 31.94, 29.78, 29.76, 29.75, 29.72, 29.70, 29.69, 29.65, 29.51, 29.49, 29.43, 29.41, 29.38, 29.31, 28.94, 26.13, 26.02, 25.73, 22.72, 14.14.

To a stirred solution of **D***n* (1.0 equiv.) in CH_2Cl_2 (0.0025 M), a solution of FeCl₃ (6.0 equiv.) in CH_3NO_2 (0.025 M) was added. The resulting solution was stirred at room temperature until completion of the reaction. The reaction mixture was quenched with methanol and extracted with dichloromethane. The combined organic layers were dried over anhydrous MgSO₄ and concentrated in vacuum. The residue was purified by column chromatography on SiO₂ with dichloromethane /petroleum ether (1/2.5) mixture as eluent to give **DTPTA***n* in yield of 80-89%.

2,3,6,7,14,15,18,19-Octakis(octyloxy)ditriphenylenethiophene (**DTPTA8**): Following the general procedure, substrate **D8** (70.0 mg, 0.05 mmol) was converted to the green solid **DTPTA8** (58.0 mg, 83%).

¹**H** NMR (CDCl₃, TMS, 400 MHz) δ (ppm): 9.00 (s, 2H, ArH), 8.66 (d, *J* = 8.6 Hz, 2H, ArH), 8.47 (d, *J* = 8.7 Hz, 2H, ArH), 8.10 (s, 2H, ArH), 7.98 (s, 2H, ArH), 7.89 (s, 2H, ArH), 4.42 (t, *J* = 6.2 Hz, 4H, OCH₂), 4.34-4.25 (m, 12H, OCH₂), 2.02-1.97 (m, 16H, CH₂), 1.64-1.52 (m, 18H, CH₂), 1.47-1.30 (m, 50H, CH₂), 1.26-1.14 (m, 12H, CH₂), 0.91 (t, *J* = 4.3 Hz, 18H, CH₃), 0.80 (t, *J* = 6.7 Hz, 6H, CH₃). ¹³C NMR (CDCl₃, 101 MHz) δ (ppm): 149.55, 149.27, 149.14, 148.66, 134.49, 134.03, 128.44, 125.37, 125.00, 124.13, 123.95, 123.44, 120.45, 119.04, 112.34, 107.31, 107.10, 106.60, 70.46, 69.58, 69.57, 69.25, 31.94, 31.92, 31.89, 29.68, 29.62, 29.59, 29.53, 29.51, 29.43, 29.42, 26.33, 26.26, 22.74, 22.70, 22.57, 14.16, 14.14, 14.08. **Elemental Analysis** (C₁₀₀H₁₄₈O₈S, MW 1510.34): calc. C 79.53%, H 9.88%, S 2.12%; found C 79.18%, H 9.65%, S 2.10%. **HRMS** (ESI) calcd for C₁₀₀H₁₄₈O₈S [M]⁺⁺ m/z: 1510.0928 (100%), 1509.0895 (92.5%), 1511.0962 (39.5%); found: 1510.0929 (100%), 1509.0930 (76.73%), 1511.0936 (52.45%).

2,3,6,7,14,15,18,19-Octakis(decyloxy)ditriphenylenethiophene (**DTPTA10**): Following the general procedure, substrate **D10** (140.0 mg, 0.08 mmol) was converted to the green solid **DTPTA10** (112.0 mg, 80%). ¹**H NMR** (CDCl₃, TMS, 400 MHz) δ (ppm): 9.00 (s, 2H, ArH), 8.66 (d, *J* = 8.7 Hz, 2H, ArH), 8.46 (d, *J* = 8.7 Hz, 2H, ArH), 8.10 (s, 2H, ArH), 7.98 (s, 2H, ArH), 7.89 (s, 2H, ArH), 4.42 (t, *J* = 6.2 Hz, 4H, OCH₂), 4.34-4.24 (m, 12H, OCH₂), 2.02-1.97 (m, 18H, CH₂), 1.63-1.53 (m, 16H, CH₂), 1.45-1.16 (m, 94H, CH₂), 0.89 (t, *J* = 6.5 Hz, 18H, CH₃), 0.81 (t, *J* = 6.9 Hz, 6H, CH₃). ¹³C **NMR** (CDCl₃, 101 MHz) δ (ppm): 149.54, 149.24, 149.12, 148.65, 134.54, 134.08, 128.47, 125.34, 125.07, 124.09, 123.95, 123.42, 120.53, 119.12, 112.11, 107.27, 107.03, 106.54, 70.38, 69.55, 69.24, 31.99, 31.95, 29.81, 29.78, 29.74, 29.71, 29.68, 29.63, 29.60, 29.56, 29.50, 29.47, 26.32, 26.27, 26.25, 22.75, 22.72, 14.19, 14.17, 14.14. **Elemental Analysis** (C₁₁₆H₁₈₀O₈S, MW 1734.77): calc. C 80.31%, H 10.46%, S 1.85%; found C 80.02%, H 10.25%, S 1.51%. **HRMS** (ESI) calcd for C₁₁₆H₁₈₀O₈S [M]⁺⁺ m/z: 1734.3432 (100%), 1733.3399 (79.7%), 1735.3466 (34.1%); found: 1734.3438 (100%), 1733.3399 (68.96%), 1735.3466 (72.06%).

2,3,6,7,14,15,18,19-Octakis(dodecyloxy)ditriphenylenethiophene (**DTPTA12**): Following the general procedure, substrate **D12** (50.0 mg, 0.03 mmol) was converted to the green solid **DTPTA12** (42.0 mg, 89%). ¹**H NMR** (CDCl₃, TMS, 400 MHz) δ: 9.02 (s, 2H, ArH), 8.70 (d, *J* = 8.3 Hz, 2H, ArH), 8.50 (d, *J* = 8.4 Hz, 2H, ArH), 8.12 (s, 2H, ArH), 7.99 (s, 2H, ArH), 7.90 (s, 2H, ArH), 4.42 (t, *J* = 6.2 Hz, 4H, OCH₂), 4.32-4.28 (m, 12H, OCH₂), 2.04-1.93 (m, 16H, CH₂), 1.61-1.52 (m, 18H, CH₂), 1.47-1.21 (m, 106H, CH₂), 1.15 (s, 20H, CH₂), 0.90-0.82 (m, 24H, CH₃). ¹³**C NMR** (CDCl₃, 101 MHz) δ(ppm): 149.56, 149.24, 149.14, 148.66, 134.56, 134.08, 128.50, 125.34, 125.09, 124.10, 123.98, 123.43, 120.54, 119.14, 112.14, 107.30, 107.06, 106.54, 70.38, 69.56, 69.25, 31.98, 31.96, 29.82, 29.80, 29.76, 29.72, 29.69, 29.65, 29.59, 29.56, 29.50,

29.45, 26.32, 26.27, 26.26, 22.74, 22.72, 14.16, 14.15. **Elemental Analysis** (C₁₃₂H₂₁₂O₈S, MW 1959.20): calc. C 80.92%, H 10.91%, S 1.64%; found C 80.78%, H 10.67%, S 1.61%. **HRMS** (ESI) calcd for C₁₃₂H₂₁₂O₈S [M]^{+•} m/z: 1958.5936 (100%), 1957.5903 (70.0%), 1959.5970 (40.9%); found: 1958.5941 (100%), 1957.5903 (57.26%), 1959.5989 (77.57%).

3. TGA

Figure S1. TGA thermograms of: (a) Dn and Tn; (b) DTPTAn and DTPTBn.

Table S1. Weight-loss temperatures of Dn and Tn

Compound	T _{dec} /°C (1% loss)	T _{dec} /°C (2% loss)	T _{dec} /°C (5% loss)
D8	332	355	384
D10	332	355	382
D12	344	371	399
T12	324	345	369
T14	336	353	373
T16	345	361	377

Table S2. Weight-loss temperature of DTPTAn and DTPTBn

Compound	T _{dec} /°C (1% loss)	T _{dec} /ºC (2% loss)	T _{dec} /ºC (5% loss)
DTPTA8	341	354	371
DTPTA10	339	360	384
DTPTA12	341	353	369
DTPTB12	312	322	360
DTPTB14	315	330	358
DTPTB16	328	352	376

4. POM

Figure S2a. POM textures of Tn, DTPTAn, DTPTBn on cooling from the isotropic liquid.

Figure S2b. POM textures of DTPTB12 on slow cooling from the isotropic liquid (top: first cooling from isotropic liquid; Bottom: second cooling from isotropic after heating into isotropic liquid).

5. DSC

Table 55. Weiting points of Da

Compound	T ^{<i>a</i>} / °C
D8	52
D10	48
D12	46

^{*a*} T, the temperature sample begins melting

	Table S4. Mesophases,	transition temperatur	res and enthalpy changes	s of Tn, DTPTBn, DTPTAn.
--	-----------------------	-----------------------	--------------------------	--------------------------

Compounds	Mesophases, transition temperature and enthalpy changes				
	2nd heating/°C (ΔH, kJ·mol ⁻¹)	1st cooling/°C (ΔH, kJ·mol ⁻¹)			
T12	Cr 6 (22.92) Col _{hex} 65 (12.50) I	I 61 (-10.41) Col _{hex} -2 (-29.21) Cr			
T14	Cr 21 (-) Cr' 38 (38.72) ^b Col _{hex} 57 (10.52) I	I 52 (-10.25) Col _{hex} 27 (-39.70) ^b Cr' 10 (-) Cr			
T16	Cr 47 (-) Cr' 54 (30.72)* I	I 55 (-5.14) Col _{hex} 46 (-22.23)* Cr" 40 (-) Cr' 34 (-14.25) Cr			
DTPTB12	Cr 89 (55.23) Col _{hex} ' 132 (1.97) Col _{hex} 240 (1.36) I	I 236 (-2.85) Col _{hex} 110 (-1.42) Col _{hex} ' 67 (-68.91) Cr			
DTPTB14	Cr 82 (-) Cr' 88 (64.57) ^b Col _{hex} 232 (4.76) I	I 231 (-5.15) Col _{hex} 62 (-83.81) Cr			
DTPTB16	Cr 89 (119.89) Col _{hex} 206 (4.73) I	I 202 (-3.56) Col _{hex} 70 (-118.50) Cr			
DTPTA8	Cr 87 (71.27) Col _{hex} 193 (3.42) I	I 191 (-4.63) Col _{hex} 59 (-73.73) Cr			
DTPTA10	Cr 86 (77.20) Col _{hex} 178 (2.06) I	I 174 (-2.13) Col _{hex} 61 (-79.19) Cr			
DTPTA12	Cr 70 (89.56) Col _{hex} 167 (3.88) I	I 165 (-3.92) Col _{hex} 53 (-91.28) Cr			

Cr, Cr': crystalline phases; Col_{hex}', Col_{hex}: hexagonal columnar mesophases; I: isotropic liquid. *Cumulated

enthalpies.

Figure S3. DSC of **T***n*, **DTPTB***n* and **DTPTA***n*: second heating (red curves), cooling (blue curves), rate 10 °C/min (for **T16**, rate is 1°C/min). Phase diagram of **T***n* and **D***n*.

Figure S4. SAXS patterns of the mesophases of compound Tn, DTPTAn and DTPTAn (record on cooling).

Table S5. Indexation: $2\theta_{exp}$: measured diffraction angle (peak position); d_{exp} and d_{cal} : experimental and calculated spacings; I: relative intensity of diffracted peak in %, VS, S, W, VW (very strong, strong, weak, very weak), and sh and br (sharp and broad); *hk*: Miller indices; h_{ch} : average distance (Å) between alkyl chains; h_{π} : average distance (Å) of π - π stacking of molecules; ξ : correlation length (Å), determined by Debye-Scherrer formula; a: columnar lattice parameter, and A: lattice area $A = \frac{1}{2}a^2\sqrt{3}$. Compound $2\theta_{exp}$ (°) d_{exp} (Å) d_{cal} (Å) I (%) *hk*/h_{cb}/h_{\pi} (ξ) Lattice parameters (Å)

Compound	$2\theta_{exp}$ (°)	$d_{exp}(A)$	d _{cal} (A)	1 (%)	$hk/h_{ch}/h_{\pi}(\xi)$	Lattice parameters (A)
T12	2.892	30.52	30.52	100	10	Colhex
(50°C)	20.36	4 36		VS (br)	h.	a = 35 24 Å
(50 C)	20.50	7.50	-	VUV (ha)	1 ch	a = 55.24 A
	25.97	3.43	-	VW (br)	$n_{\pi}(-)$	$A = 10/5.5 / A^2$
T14	2.715	32.51	32.51	100	10	Colhar
(45°C)	4 701	18 78	18 77	2.2	11	a = 3754 Å
(+5 C)	5.422	16.76	16.77	2.2	20	
	5.433	16.25	16.26	6.3	20	$A = 1220.40 A^2$
	8.155	10.83	10.83	2	30	
	20.24	4.38	-	VS (br)	h _{ch}	
	25 74	3 46	_	VW (br)	h (-)	
	25.74	3.40	24.16	100	Π _π (-)	<u> </u>
110	2.584	34.16	34.16	100	10	Col _{rec}
(50°C)	4.477	19.72	19.72	7.2	11	a = 39.44 Å
	5169	17.08	17.08	6.3	20	$A = 1347.43 \text{ Å}^2$
	6 840	12 91	12.91	2	21	
	20.16	4.40	12.91	VS (ha)	2-1 h	
	20.10	4.40	-		n _{ch}	
	21.40	4.15	-	30.6 (sh)	$h_{\pi}(181)$	
DTPTB12	3.086	28.60	28.61	100	10	Col _{hex}
(95°C)	5.341	16.53	16.52	5	11	a = 33.04 Å
	20.93	4 24	_	VS (br)	h.	$A = 945 \ 16 \ Å^2$
	20.75	2 47	-	VS(0I)	h (26)	A)45.10 A
	23.03	5.47	-	V S (SII)	$n_{\pi}(20)$	~ 1
DTPTB12	3.078	28.68	28.68	100	10	Col _{hex}
(120°C)	5.332	16.56	16.56	8.5	11	a = 33.12 Å
	19.50	4.55	-	VS (br)	h _{ch}	$A = 949.80 \text{ Å}^2$
	25.40	3.50	-	S (br)	$h_{-}(11)$	
DTPTR12	3 173	27.82	27.82	100	10	Col
$(210^{\circ}C)$	10.75	1 40	27.02	VS(hr)	h	a = 32.12 Å
(210 C)	19.75	4.49	-		1 ()	a = 32.12 A
	24.36	3.65	-	S (br)	h _π (-)	A = 893.68 A ²
DTPTB14	2.990	29.52	29.55	100	10	Col _{hex}
(120°C)	5.169	17.08	17.06	14.4	11	a = 34.12 Å
	19.59	4.53	-	VS (br)	h _{ch}	$A = 1008.29 \text{ Å}^2$
	25.40	3.50	-	S (br)	h- (9)	
DTDTD14	2.022	20.21	20.20	100	<i>n</i> (-)	<u> </u>
	5.022	29.21	29.20	100	10	
(180°C)	5.240	16.85	16.86	13.8	11	a = 33.72 A
	20.13	4.41	-	VS (br)	h _{ch}	$A = 984.54 \text{ Å}^2$
	24.62	3.61	-	S (br)	$h_{\pi}(-)$	
DTPTR16	2 783	31.72	31.72	100	10	Col
	2.705	10.22	10.21	100	10	
$(120^{\circ}C)$	4.819	18.32	18.31	17.2	11	a = 36.63 A
	5.567	15.86	15.86	13.3	20	$A = 1161.81 \text{ Å}^2$
	19.68	4.51	-	VS (br)	h _{ch}	
	25.53	3.49	-	S (sh)	$h_{-}(11)$	
DTPTR16	2.846	31.02	31.02	100	10	Cal
	2.040	17.02	51.02	100	10	
(180°C)	4.938	17.88	17.91	16.5	11	a = 35.82 A
	5.68	15.54	15.51	15.51	20	$A = 1111.10 A^2$
	19.89	4.46	-	VS (br)	h _{ch}	
	24.64	3.61	-	S (br)	$h_{\pi}(-)$	
DTPTA8	3.737	23.62	23.62	100	10	Colhar
(95°C)	20.65	4 30		VS (br)	h.	a = 27.27 Å
()) ()	25.11	3 55		VS(br)	h (20)	$A = 644.21 \text{ Å}^2$
	23.11	5.55	-	v S (DI)	$n_{\pi}(20)$	A = 044.21 A*
DTPTA8	3.794	23.27	23.27	100	10	Col _{hex}
(150°C)	19.99	4.44	-	VS (br)	h _{ch}	a = 26.87 Å
	24.49	3.63	-	S (br)	$h_{\pi}(14)$	$A = 625.26 \text{ Å}^2$
DTPTA10	3.469	25.45	25.45	100	10	Coltar
$(100^{\circ}C)$	20.14	4.40	20110	VS (br)	h	a = 20.30 Å
(100 C)	20.14	4.40	-	V3(01)	I_{ch}	a = 29.39 A
	24.89	3.57		S (br)	$n_{\pi}(14)$	$A = /4 / .90 A^2$
DTPTA10	3.574	24.70	24.70	100	10	Col _{hex}
(170°C)	20.15	4.40	_	VS (br)	h ,	a = 28.52 Å
()	23.51	3 78		W(br)	h ()	$A = 704.47 ^{\text{A}2}$
DIDITI	23.51	3.76	-	W (01)	$\Pi_{\pi}(-)$	A = /04.47 A*
DIPIAI2	3.129	28.21	28.21	100	10	Col _{hex}
(80°C)	20.36	4.36	-	VS (br)	h _{ch}	a = 32.57 Å
	25.18	3.53	-	S (br)	$h_{\pi}(-)$	$A = 918.91 \text{ Å}^2$
DTPTA 12	2 271	26.00	26.00	100	10	Cal
DIFIAI2	3.2/1	26.99	20.99	100	10	Col _{hex}
(150°C)	20.36	4.36	-	VS (br)	h _{ch}	a = 31.16 A
	24.23	3.67	-	W (br)	$h_{\pi}(-)$	$A = 841.15 \text{ Å}^2$

7. SEM Images

Figure S5. SEM images of xerogels from CH₂Cl₂/EtOH ("good/poor" solvent). (a) DTPTB14; (b) DTPTA12.

8. TOF

Table S6. TOF photoconductivity (hole) of DTPTB12 recorded on cooling (cell thickness $17.7 \ \mu m$).

Т	E	T hole	μ _{hole}	µaverage hole
(°C)	(V cm ⁻¹)	(s)	$(cm^2 V^{-1} s^{-1})$	$(cm^2 V^{-1} s^{-1})$
	2×10^{4}	1.66×10-5	2.14×10-3	2.14×10-3
220	3×10 ⁴	2.06×10 ⁻⁵	2.12×10 ⁻³	
	4×10^{4}	2.78×10-5	2.15×10-3	
	5×10 ⁴	4.14×10-5	2.13×10-3	
	2×10^{4}	4.15×10-5	2.13×10-3	2.13×10-3
210	3×10 ⁴	2.78×10-5	2.12×10-3	
	4×10^{4}	2.08×10 ⁻⁵	2.13×10-3	
	5×10^{4}	1.66×10-5	2.13×10-3	
	2×10^{4}	4.11×10 ⁻⁵	2.15×10-3	2.14×10-3
200	3×10 ⁴	2.80×10-5	2.11×10-3	
	4×10^{4}	2.07×10-5	2.14×10-3	
	5×10 ⁴	1.65×10 ⁻⁵	2.14×10 ⁻³	
	2×10^{4}	4.18×10-5	2.12×10-3	2.12×10-3
190	3×10 ⁴	2.76×10-5	2.14×10-3	
	4×10^{4}	2.10×10 ⁻⁵	2.11×10 ⁻³	
	5×10 ⁴	1.67×10 ⁻⁵	2.12×10-3	
	2×10 ⁴	4.13×10-5	2.14×10-3	2.14×10-3
180	3×10 ⁴	2.77×10 ⁻⁵	2.13×10-3	
	4×10^{4}	2.06×10-5	2.14×10-3	
	5×10 ⁴	1.65×10 ⁻⁵	2.15×10-3	
	2×10 ⁴	4.17×10-5	2.14×10-3	2.15×10-3
170	3×10 ⁴	2.74×10 ⁻⁵	2.16×10-3	
	4×10^{4}	2.05×10-5	2.15×10-3	
	5×10 ⁴	1.60×10 ⁻⁵	2.12×10-3	
1(0	2×10^{4}	4.17×10 ⁻⁵	2.12×10 ⁻³	2.14×10-3
160	3×10 ⁴	2.75×10-5	2.14×10-3	
	4×10^{4}	2.06×10-5	2.14×10-3	

	5×10^{4}	1.65×10-5	2.14×10-3	
	2×10^{4}	4.31×10 ⁻⁵	2.06×10-3	2.06×10-3
150	3×10 ⁴	2.89×10 ⁻⁵	2.04×10 ⁻³	
	4×10 ⁴	2.14×10 ⁻⁵	2.07×10-3	
	5×10^{4}	1.70×10 ⁻⁵	2.09×10-3	
	2×10^{4}	4.32×10 ⁻⁵	2.05×10-3	2.07×10 ⁻³
140	3×10 ⁴	2.84×10 ⁻⁵	2.08×10-3	
	4×10^{4}	2.13×10 ⁻⁵	2.08×10-3	
	5×10^{4}	1.73×10 ⁻⁵	2.05×10-3	
	2×10^{4}	4.36×10 ⁻⁵	2.03×10-3	1.99×10 ⁻³
130	3×10^{4}	2.96×10 ⁻⁵	1.99×10 ⁻³	
	4×10^{4}	2.22×10 ⁻⁵	2.00×10-3	
	5×10^{4}	1.78×10 ⁻⁵	1.99×10 ⁻³	
	2×10^{4}	4.62×10 ⁻⁵	1.92×10-3	1.93×10 ⁻³
120	3×10^{4}	3.02×10 ⁻⁵	1.95×10-3	
	4×10^{4}	2.32×10 ⁻⁵	1.91×10 ⁻³	
	5×10^{4}	1.84×10 ⁻⁵	1.93×10-3	
110	3×10^{4}	2.00×10-5	2.95×10-3	2.96×10-3
110	4×10 ⁴	1.48×10 ⁻⁵	2.98×10 ⁻³	
	5×10 ⁴	1.20×10-5	2.95×10-3	
	3×10^{4}	2.00×10-5	2.95×10-3	2.95×10-5
100	4×10 ⁴	1.50×10 ⁻⁵	2.95×10-3	
	5×10^{4}	1.20×10 ⁻⁵	2.95×10-3	
00	4×10^{4}	1.51×10 ⁻⁵	2.93×10 ⁻³	2.94×10 ⁻³
90	5×10 ⁴	1.20×10-5	2.96×10-3	
80	3×10^{4}	2.03×10-5	2.90×10-3	2.91×10-3
80	4×10^{4}	1.52×10-5	2.91×10 ⁻³	

Table S7. TOF photoconductivity (hole) of DTPTB12 recorded on heating (cell thickness 17.7 μ m).

Т	Ε	$ au_{ m hole}$	$\mu_{ m hole}$	µaverage hole
(°C)	(V cm ⁻¹)	(s)	(cm ² V ⁻¹ s ⁻¹)	(cm ² V ⁻¹ s ⁻¹)
110	4×10^{4}	1.51×10 ⁻⁵	2.93×10 ⁻³	2.93×10-3
	5×10 ⁴	1.21×10 ⁻⁵	2.93×10-3	
120	4×10^{4}	1.52×10-5	2.91×10 ⁻³	2.93×10-3
	5×10 ⁴	1.20×10-5	2.95×10-3	
130	3×10 ⁴	2.00×10-5	2.95×10-3	2.94×10-3
	4×10^{4}	1.51×10-5	2.93×10 ⁻³	
	5×10 ⁴	1.20×10-5	2.94×10-3	
140	2×10^{4}	3.14×10 ⁻⁵	2.59×10-3	2.62×10-3
	3×10 ⁴	2.25×10-5	2.62×10-3	
	4×10 ⁴	1.69×10-5	2.62×10-3	
	5×10 ⁴	1.34×10 ⁻⁵	2.64×10 ⁻³	
150	2×10 ⁴	3.77×10 ⁻⁵	2.35×10-3	2.35×10-3

	3×10^{4}	2.50×10-5	2.36×10-3	
	4×10^{4}	1.88×10-5	2.35×10-3	
	5×10^{4}	1.50×10 ⁻⁵	2.36×10-3	
160	2×10^{4}	3.92×10 ⁻⁵	2.26×10-3	2.27×10-3
	3×10^{4}	2.61×10-5	2.26×10-3	
	4×10^{4}	1.93×10 ⁻⁵	2.29×10-3	
	5×10^{4}	1.56×10-5	2.27×10-3	
170	2×10^{4}	3.96×10 ⁻⁵	2.24×10 ⁻³	2.23×10 ⁻³
	3×10^{4}	2.65×10-5	2.22×10-3	
	4×10^{4}	1.98×10 ⁻⁵	2.23×10-3	
	5×10^{4}	1.60×10 ⁻⁵	2.22×10 ⁻³	
180	2×10^{4}	4.00×10 ⁻⁵	2.21×10-3	2.21×10-3
	3×10 ⁴	2.68×10-5	2.20×10-3	
	4×10^{4}	1.99×10 ⁻⁵	2.23×10-3	
	5×10^{4}	1.60×10-5	2.21×10-3	
190	2×10^{4}	4.08×10 ⁻⁵	2.17×10-3	2.18×10 ⁻³
	3×10^{4}	2.68×10-5	2.20×10-3	
	4×10^{4}	2.04×10-5	2.17×10-3	
200	3×10^{4}	3.07×10 ⁻⁵	2.13×10 ⁻³	2.12×10 ⁻³
	4×10^{4}	2.16×10-5	2.14×10-3	
	5×10^{4}	1.61×10 ⁻⁵	2.11×10-3	
210	2×10^{4}	4.12×10-5	2.15×10-3	2.13×10-3
	3×10^{4}	2.84×10-5	2.08×10-3	
	4×10^{4}	2.08×10 ⁻⁵	2.13×10 ⁻³	
	5×10^{4}	1.64×10 ⁻⁵	2.16×10-3	
220	2×10^{4}	4.06×10-5	2.18×10-3	2.18×10-3
	3×10^{4}	2.70×10-5	2.19×10-3	
	4×10^{4}	2.04×10-5	2.17×10-3	
	5×10^{4}	1.62×10 ⁻⁵	2.19×10-3	

Figure S6. POM images of sample DTPTB12 in ITO LC cell taken both on heating and cooling run during the TOF measurement.

Τ	Ε	T hole	$\mu_{ m hole}$	µaverage hole
(°C)	(V cm ⁻¹)	(\$)	$(cm^2 V^{-1} s^{-1})$	$(cm^2 V^{-1} s^{-1})$
160	3×10^{4}	1.09×10 ⁻⁴	6.02×10 ⁻⁴	6.36×10 ⁻⁴
	4×10^{4}	7.72×10-5	6.38×10-4	
	5×10^{4}	5.90×10-5	6.68×10-4	
150	3×10^{4}	1.08×10 ⁻⁴	6.08×10 ⁻⁴	6.36×10 ⁻⁴
	4×10^{4}	7.74×10 ⁻⁵	6.36×10-4	
	5×10^{4}	5.98×10-5	6.59×10 ⁻⁴	
140	3×10^{4}	1.11×10-4	5.90×10 ⁻⁴	5.96×10 ⁻⁴
	4×10^{4}	8.48×10-5	5.81×10-4	
	5×10 ⁴	6.39×10 ⁻⁵	6.16×10 ⁻⁴	
130	3×10 ⁴	1.22×10-4	5.39×10-4	5.75×10-4
	4×10^{4}	8.39×10-5	5.87×10-4	
	5×10^{4}	6.56×10 ⁻⁵	6.00×10 ⁻⁴	
120	3×10 ⁴	1.28×10-4	5.14×10-4	5.33×10-4
	4×10^{4}	9.50×10-5	5.18×10 ⁻⁴	
	5×10^{4}	6.94×10 ⁻⁵	5.68×10-4	
110	3×10 ⁴	7.89×10-5	5.00×10-4	4.71×10-4
	4×10^{4}	1.06×10 ⁻⁴	4.67×10 ⁻⁴	
	5×10 ⁴	1.47×10-4	4.47×10-4	
100	3×10 ⁴	1.69×10-4	3.89×10-4	4.06×10-4
	4×10^{4}	1.21×10-4	4.07×10-4	
	5×10^{4}	9.37×10-5	4.21×10 ⁻⁴	
90	3×10^{4}	1.94×10 ⁻⁴	3.39×10 ⁻⁴	3.54×10 ⁻⁴
	4×10^{4}	1.38×10-4	3.56×10-4	
	5×10^{4}	1.07×10-4	3.68×10-4	
80	3×10 ⁴	2.28×10-4	2.88×10-4	2.98×10 ⁻⁴
	4×10 ⁴	1.64×10-4	3.00×10-4	
	5×10 ⁴	1.29×10-4	3.07×10-4	
70	3×10 ⁴	2.62×10-4	2.50×10-4	2.66×10-4
	4×10^{4}	2.05×10-4	2.40×10-4	
	5×10 ⁴	1.48×10 ⁻⁴	2.67×10-4	

Table S8. TOF photoconductivity (hole) of DTPTA12 recorded on cooling (cell thickness 19.7 µm).

Т	E	$ au_{ m hole}$	$\mu_{ m hole}$	µaverage hole
(°C)	(V cm ⁻¹)	(s)	(cm ² V ⁻¹ s ⁻¹)	(cm ² V ⁻¹ s ⁻¹)
70	3×10 ⁴	2.62×10-3	2.50×10-5	2.81×10-5
	4×10^{4}	1.68×10-3	2.93×10 ⁻⁵	
	5×10 ⁴	1.31×10-3	3.00×10-5	
80	3×10 ⁴	7.02×10-4	9.35×10-5	9.92×10 ⁻⁵
	4×10^{4}	4.67×10 ⁻⁴	1.05×10 ⁻⁴	
	5×10 ⁴	3.98×10-4	9.90×10-5	
90	3×10 ⁴	1.98×10-4	3.32×10-4	3.35×10-4
	4×10^{4}	1.45×10-4	3.40×10-4	
	5×10 ⁴	1.19×10-4	3.32×10-4	
100	3×10^{4}	1.79×10 ⁻⁴	3.63×10 ⁻⁴	3.66×10-4
	4×10^{4}	1.39×10-4	3.53×10-4	
	5×10 ⁴	1.04×10-4	3.77×10-4	
110	3×10 ⁴	1.51×10 ⁻⁴	4.35×10 ⁻⁴	4.12×10 ⁻⁴
	4×10^{4}	1.12×10-4	4.05×10-4	
	5×10 ⁴	9.94×10 ⁻⁵	3.96×10 ⁻⁴	
120	3×10^{4}	1.54×10-4	4.28×10-4	4.40×10-4
	4×10^{4}	1.07×10-4	4.60×10-4	
	5×10 ⁴	9.11×10 ⁻⁵	4.32×10 ⁻⁴	
130	3×10 ⁴	7.56×10-5	5.21×10-4	5.34×10-4
	4×10^{4}	9.12×10-5	5.40×10-4	
	5×10 ⁴	1.21×10-4	5.41×10-4	
140	3×10 ⁴	1.33×10-4	4.95×10-4	5.05×10-4
	4×10^{4}	9.86×10 ⁻⁵	5.00×10 ⁻⁴	
	5×10 ⁴	7.58×10-5	5.20×10-4	
150	3×10 ⁴	6.62×10 ⁻⁵	5.95×10-4	5.95×10-4
	4×10^{4}	8.14×10 ⁻⁵	6.05×10 ⁻⁴	
	5×10 ⁴	1.14×10-4	5.85×10-4	
160	3×10 ⁴	1.15×10 ⁻⁴	5.71×10 ⁻⁴	5.97×10 ⁻⁴
	4×10 ⁴	8.45×10-5	5.83×10-4	
	5×10 ⁴	6.20×10-5	6.36×10-4	

Table S9. TOF photoconductivity (hole) of DTPTA12 recorded on heating (cell thickness 19.7 µm).

Figure S7. POM images of sample DTPTA12 in ITO LC cell taken on cooling during the TOF measurement.

9. Relationship of TOF charge carrier mobility and Mesophase/Molecular structures

Figure S8. Butterfly-shape columnar mesogens.

	Table S10.	Charge c	arrier mobility	7 (μ, TOF) of b	utterfly-shape molecul	es
. 6						

Compound	R	Phase	Temperature (°C)	Mobility x 10 ⁻³ cm ² /Vs	Ref
DT	OC ₅ H ₁₁	Col _{hex}	120	1.15 (μ+)	6
		Cr	30	10 (µ+)	
ВРТ	OC ₆ H ₁₃	Col _{rec}	210	4.39 (μ+)	6
		Cr	170	30 (µ+)	
втвт	OC ₁₀ H ₂₁	Col _{hex}	230	1.7 (μ+)/2.0 (μ-)	7
DTT	OC ₁₄ H ₂₉	Col _{hex}	220-70	1.5 (μ+)	8
DTT	OC ₁₆ H ₃₃	Col _{hex}	200-160	1.2 (µ+)	8
			150-80	0.4 (µ+)	
BDTO	OC ₁₄ H ₂₉	Col _{hex}	180/120	4.5 (μ+)/6.6 (μ-)	9

⁶ K. C. Zhao, J. Q. Du, H. F. Wang, K. Q. Zhao, P. Hu, B. Q. Wang, H. Monobe, B. Heinrich and B. Donnio, *Chem. Asian J.*, 2019, **14**, 462-470.

⁷ C. X. Liu, H. Wang, J. Q. Du, K. Q. Zhao, P. Hu, B. Q. Wang, H. Monobe, B. Heinrich and B. Donnio, *J. Mater. Chem. C*, 2018, **6**, 4471-4778.

⁸ T. Ma, H. F. Wang, K. Q. Zhao, B. Q. Wang, P. Hu, H. Monobe, B. Heinrich and B. Donnio, *ChemPlusChem.*, 2019, **84**, 1439-1488.

СDTO	OC ₁₄ H ₂₉	Col _{hex}	80-220	1.5-2.1(μ+)	9
DTPTA	OC ₁₂ H ₂₅	Col _{hex}	160	0.6 (μ+)	This work
DTPTB	OC ₁₂ H ₂₅	Col _{hex}	100	3.0 (µ+)	This work
СТР	OC ₁₂ H ₂₅	Col _{hex}	190	1.3 (µ+)	10
FTP		Col _{hex}	110-220	7.3 (μ+)	10
LTP	OC ₁₀ H ₂₁	Col _{hex}	180	5.6 (μ+)	10
		Col _{rec}	110	25.7 (μ+)	
LTP	OC ₁₂ H ₂₅	Col _{hex}	160	0.4 (μ+)	10
		Col _{rec}	90	8.0 (μ+)	

10. DFT

⁹ T. Ma, Y. J. Zhong, H. F. Wang, K. Q. Zhao, B. Q. Wang, P. Hu, H. Monobe and B. Donnio, *Chem. Asian. J.*, 2021, **16**, 1106-1117. ¹⁰ J. F. Hang, H. Lin, K. Q. Zhao, P. Hu, B. Q. Wang, H. Monobe, C. H. Zhu and B. Donnio. *Eur. J. Org. Chem.*, 2021, **2021**, 1989-2002.

DTPTA	H ₃ CO OCH ₃
	H ₃ CO H ₃ CO OCH ₃

Table S12. List of selected molecular orbital energies for T, D, DTPTB, DTPTA and their HOMO-LUMO energy gaps (ΔE).

	HOMO-2	HOMO-1	НОМО	ΔE	LUMO	LUMO+1	LUMO+2
	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)
Т	-5.57	-5.23	-5.04	3.99	-1.05	-0.42	-0.30
D	-5.73	-5.42	-5.38	4.41	-0.97	-0.62	-0.52
DTPTB	-5.31	-5.07	-4.95	3.65	-1.30	-0.83	-0.70
DTPT	-5.43	-5.20	-5.09	3.87	-1.22	-0.81	-0.81
А							

Т

D

DTPTB

Figure S9. Partial molecular orbital diagrams for T, D, DTPTB and DTPTA with some selected isodensity frontier molecular orbital mainly involved in the electronic transitions. All the DFT energy values are given in electronvolts. The arrows are

intended to highlight the HOMO-LUMO energy gaps.

Table S13	B. Selected	calculated of	excitation	energies (ΔE), c	oscillator	strengths	(f), mai	n orbital	components	, and a	assignme	nt for
the T, D, I	DTPTB, D	FPTA in T	HF solution	on. ^a									

Compd.	λ_{exc}/nm	ΔE/eV	f	Transitions (Percentage Contribution)
Т	353.3	3.51	0.1326	H-1→L+0(+12%), H-0→L+0(+68%)
	334.7	3.70	0.4978	H-1→L+0(+67%), H-2→L+0(+10%)
	310.0	4.00	0.3620	H-2→L+0(+59%), H-3→L+0(+22%), H-1→L+1(+18%)
	301.9	4.11	0.1027	H-3→L+0(+47%), H-0→L+2(+28%), H-4→L+0(+15%)
	295.1	4.20	0.3490	H-0→L+1(+46%), H-3→L+0(+31%), H-1→L+1(+27%)
	292.1	4.24	0.0062	H-0→L+2(+45%), H-0→L+1(+42%), H-2→L+0(+13%)
	287.4	4.31	0.1786	H-4→L+0(+48%), H-1→L+1(+36%)
	283.0	4.38	0.2495	H-1→L+1(+39%), H-0→L+2(+30%), H-1→L+2(+26%)
	277.7	4.46	0.0596	H-1→L+2(+52%), H-4→L+0(+27%), H-0→L+4(+12%)
	271.8	4.56	0.1334	H-0→L+5(+50%), H-5→L+0(+18%)
	270.7	4.58	0.0438	H-1→L+3(+45%), H-0→L+5(+24%), H-7→L+0(+13%)
	268.6	4.62	0.0191	H-5→L+0(+39%), H-1→L+3(+29%), H-0→L+3(+24%)
	266.2	4.66	0.0528	H-0→L+3(+47%), H-0→L+4(+20%), H-0→L+5(+16%)
	264.8	4.68	0.1139	H-6→L+0(+45%), H-2→L+1(+24%), H-0→L+5(+23%)
	263.3	4.71	0.0464	H-6→L+0(+37%), H-0→L+3(+31%), H-2→L+2(+15%)
	261.3	4.75	0.0786	H-3→L+1(+38%), H-2→L+2(+29%), H-2→L+1(+17%)
	259.6	4.78	0.0214	H-0→L+4(+35%), H-2→L+2(+32%), H-3→L+1(+22%)
	258.6	4.79	0.0155	H-7 \rightarrow L+0(+37%), H-0 \rightarrow L+3(+13%), H-2 \rightarrow L+5(+11%)

	257.3	4.82	0.0870	H-3→L+1(+42%), H-9→L+0(+14%), H-6→L+0(+13%)
	255.7	4.85	0.2356	H-1→L+4(+38%), H-2→L+1(+15%), H-2→L+2(+15%)
	253.9	4.88	0.0641	H-1→L+6(+33%), H-3→L+2(+27%), H-2→L+3(+11%)
	252.5	4.91	0.0089	H-8→L+0(+37%), H-7→L+0(+32%), H-1→L+4(+29%)
	252.2	4.92	0.0110	H-8→L+0(+31%), H-4→L+1(+23%), H-7→L+0(+14%)
	250.6	4.95	0.0366	H-0→L+7(+32%), H-1→L+6(+12%), H-1→L+7(+11%)
	249.2	4.97	0.0506	H-3→L+2(+33%), H-1→L+3(+15%), H-1→L+4(+14%)
	248.5	4.99	0.0081	H-4→L+1(+48%), H-3→L+2(+25%), H-9→L+0(+18%)
	247.7	5.01	0.0066	H-1→L+5(+46%), H-7→L+0(+30%), H-1→L+6(+14%)
	246.3	5.03	0.0050	H-0→L+6(+56%), H-2→L+3(+16%), H-1→L+5(+13%)
	245.2	5.06	0.0749	H-2→L+3(+45%), H-3→L+3(+20%), H-1→L+5(+12%)
	243.4	5.09	0.0359	H-9→L+0(+46%), H-2→L+3(+16%), H-1→L+6(+14%)
D	318.6	3.89	0.0441	H-0→L+0(+62%)
	315.9	3.93	0.0280	H-1→L+0(+60%), H-0→L+0(+32%)
	298.9	4.15	0.0364	H-2→L+0(+61%), H-1→L+0(+16%), H-4→L+0(+13%)
	292.5	4.24	0.3647	H-1→L+1(+66%), H-2→L+0(+17%)
	285.5	4.34	0.2912	H-0→L+2(+67%)
	282.0	4.40	0.0247	H-0→L+1(+65%), H-0→L+2(+15%), H-3→L+0(+14%)
	279.7	4.43	0.0110	H-3→L+0(+58%), H-5→L+0(+17%)
	277.5	4.47	0.0151	$H-1 \rightarrow L+2(+56\%), H-2 \rightarrow L+1(+11\%)$
	275.9	4.49	0.0757	H-4→L+0(+59%), H-3→L+0(+23%), H-5→L+0(+19%)
	274.1	4.52	0.0712	$H-2 \rightarrow L+1(+37\%), H-4 \rightarrow L+0(+18\%)$
	271.4	4.57	0.0582	H-5→L+0(+34%), H-2→L+2(+27%), H-1→L+2(+27%)
	269.8	4.60	0.1265	H-0→L+4(+57%), H-0→L+3(+19%)
	268.1	4.62	0.0787	H-2→L+2(+35%), H-1→L+3(+33%), H-2→L+1(+26%)
	266.0	4.66	0.2270	H-2→L+1(+42%), H-5→L+0(+28%), H-1→L+3(+20%)
	261.6	4.74	0.1503	$H-3 \rightarrow L+1(+44\%), H-4 \rightarrow L+1(+33\%), H-1 \rightarrow L+6(+13\%)$
	258.7	4.79	0.0283	H-0→L+5(+35%), H-4→L+2(+26%), H-2→L+2(+23%)
	256.9	4.83	0.0035	$H-0 \rightarrow L+3(+59\%), H-2 \rightarrow L+3(+14\%), H-5 \rightarrow L+2(+14\%)$
	255.8	4.85	0.0381	$H-5 \rightarrow L+1(+39\%), H-1 \rightarrow L+4(+32\%), H-4 \rightarrow L+1(+20\%)$
	254.5	4.87	0.0092	$H-1 \rightarrow L+4(+37\%), H-1 \rightarrow L+3(+13\%), H-1 \rightarrow L+6(+13\%)$
	252.9	4.90	0.0796	$H-6 \rightarrow L+0(+40\%), H-1 \rightarrow L+4(+28\%), H-3 \rightarrow L+1(+15\%)$
	252.3	4.91	0.0801	H-0→L+5(+33%), H-3→L+2(+27%), H-0→L+4(+17%)
	251.4	4.93	0.1089	$H-5 \rightarrow L+2(+31\%), H-2 \rightarrow L+3(+24\%), H-1 \rightarrow L+6(+20\%)$
	251.0	4.94	0.0808	H-7 \rightarrow L+0(+31%), H-6 \rightarrow L+0(+29%), H-1 \rightarrow L+6(+27%)
	249.7	4.97	0.0008	$H-4 \rightarrow L+1(+42\%), H-2 \rightarrow L+3(+14\%)$
	249.0	4.98	0.0032	H-7→L+0(+49%), H-5→L+2(+26%), H-2→L+3(+20%)
	246.9	5.02	0.0132	$H-2 \rightarrow L+4(+37\%), H-2 \rightarrow L+3(+28\%), H-0 \rightarrow L+8(+18\%)$
	245.5	5.05	0.0226	H-1→L+5(+41%), H-1→L+7(+33%), H-2→L+4(+20%)
	243.9	5.08	0.0894	$H-2\rightarrow L+3(+40\%), H-8\rightarrow L+0(+16\%), H-5\rightarrow L+1(+14\%)$
	243.7	5.09	0.0313	H-3→L+2(+49%), H-4→L+2(+43%)
	241.7	5.13	0.0525	H-8→L+0(+42%), H-5→L+3(+26%), H-2→L+4(+19%)
DTPTB	353.3	3.51	0.1326	H-1→L+0(+12%), H-0→L+0(+68%)

	334.7	3.70	0.4978	H-1→L+0(+67%), H-2→L+0(+10%)
	310.0	4.00	0.3620	H-2→L+0(+59%), H-3→L+0(+22%), H-1→L+1(+18%)
	301.9	4.11	0.1027	H-3→L+0(+47%), H-0→L+2(+28%), H-4→L+0(+15%)
	295.1	4.20	0.3490	H-0→L+1(+46%), H-3→L+0(+31%), H-1→L+1(+27%)
	292.1	4.24	0.0062	H-0→L+2(+45%), H-0→L+1(+42%), H-2→L+0(+13%)
	287.4	4.31	0.1786	H-4→L+0(+48%), H-1→L+1(+36%)
	283.0	4.38	0.2495	H-1→L+1(+39%), H-0→L+2(+30%), H-1→L+2(+26%)
	277.7	4.46	0.0596	H-1→L+2(+52%), H-4→L+0(+27%), H-0→L+4(+12%)
	271.8	4.56	0.1334	H-0→L+5(+50%), H-5→L+0(+18%)
	270.7	4.58	0.0438	H-1→L+3(+45%), H-0→L+5(+24%), H-7→L+0(+13%)
	268.6	4.62	0.0191	H-5→L+0(+39%), H-1→L+3(+29%), H-0→L+3(+24%)
	266.2	4.66	0.0528	H-0→L+3(+47%), H-0→L+4(+20%), H-0→L+5(+16%)
	264.8	4.68	0.1139	H-6→L+0(+45%), H-2→L+1(+24%), H-0→L+5(+23%)
	263.3	4.71	0.0464	H-6→L+0(+37%), H-0→L+3(+31%), H-2→L+2(+15%)
	261.3	4.75	0.0786	H-3→L+1(+38%), H-2→L+2(+29%), H-2→L+1(+17%)
	259.6	4.78	0.0214	H-0→L+4(+35%), H-2→L+2(+32%), H-3→L+1(+22%)
	258.6	4.79	0.0155	H-7→L+0(+37%), H-0→L+3(+13%), H-2→L+5(+11%)
	257.3	4.82	0.0870	H-3→L+1(+42%), H-9→L+0(+14%), H-6→L+0(+13%)
	255.7	4.85	0.2356	H-1→L+4(+38%), H-2→L+1(+15%), H-2→L+2(+15%)
	253.9	4.88	0.0641	H-1→L+6(+33%), H-3→L+2(+27%), H-2→L+3(+11%)
	252.5	4.91	0.0089	H-8→L+0(+37%), H-7→L+0(+32%), H-1→L+4(+29%)
	252.2	4.92	0.0110	H-8→L+0(+31%), H-4→L+1(+23%), H-7→L+0(+14%)
	250.6	4.95	0.0366	H-0→L+7(+32%), H-1→L+6(+12%), H-1→L+7(+11%)
	249.2	4.97	0.0506	$H-3 \rightarrow L+2(+33\%), H-1 \rightarrow L+3(+15\%), H-1 \rightarrow L+4(+14\%)$
	248.5	4.99	0.0081	H-4→L+1(+48%), H-3→L+2(+25%), H-9→L+0(+18%)
	247.7	5.01	0.0066	H-1→L+5(+46%), H-7→L+0(+30%), H-1→L+6(+14%)
	246.3	5.03	0.0050	H-0→L+6(+56%), H-2→L+3(+16%), H-1→L+5(+13%)
	245.2	5.06	0.0749	H-2→L+3(+45%), H-3→L+3(+20%), H-1→L+5(+12%)
	243.4	5.09	0.0359	H-9→L+0(+46%), H-2→L+3(+16%), H-1→L+6(+14%)
DTPTA	364.3	3.40	0.0259	H-1→L+0(+61%)
	361.1	3.43	0.6278	H-0→L+0(+66%), H-1→L+1(+12%)
	345.5	3.59	0.0164	$H-2 \rightarrow L+0(+49\%), H-0 \rightarrow L+2(+33\%), H-0 \rightarrow L+0(+12\%)$
	323.9	3.83	0.0008	$H-3 \rightarrow L+0(+44\%), H-1 \rightarrow L+1(+30\%), H-2 \rightarrow L+1(+14\%)$
	317.2	3.91	0.1086	$H-0 \rightarrow L+3(+37\%), H-0 \rightarrow L+1(+36\%), H-0 \rightarrow L+2(+29\%)$
	315.3	3.93	0.5043	H-1→L+1(+46%), H-1→L+2(+36%), H-2→L+0(+24%)
	312.0	3.97	0.5640	$H-2 \rightarrow L+0(+39\%), H-1 \rightarrow L+3(+27\%), H-0 \rightarrow L+1(+24\%)$
	310.6	4.00	0.0780	H-0→L+3(+37%), H-3→L+0(+36%), H-1→L+2(+14%)
	304.7	4.07	0.0368	H-1→L+2(+31%), H-3→L+0(+26%), H-2→L+1(+20%)
	304.5	4.07	0.0040	H-1→L+3(+54%), H-0→L+4(+22%), H-0→L+2(+21%)
	301.4	4.11	0.0289	H-0→L+4(+59%), H-5→L+0(+25%)
	296.1	4.19	0.0285	H-1→L+4(+35%), H-3→L+2(+21%), H-0→L+3(+15%)
	292.1	4.24	0.0532	H-4→L+0(+45%), H-1→L+4(+36%)
	292.0	4.25	0.5454	H-2→L+2(+52%), H-1→L+3(+11%), H-3→L+3(+10%)

	290.0	4.28	0.0022	H-0→L+5(+41%), H-3→L+0(+25%), H-2→L+3(+22%)
	283.0	4.38	0.0264	H-3→L+1(+38%), H-3→L+2(+30%), H-1→L+5(+28%)
	281.6	4.40	0.0093	H-1→L+4(+38%), H-2→L+3(+30%), H-3→L+1(+20%)
	280.4	4.42	0.0068	H-1→L+5(+42%), H-2→L+4(+35%), H-5→L+0(+33%)
	279.4	4.44	0.0970	H-5→L+0(+41%), H-3→L+1(+21%), H-3→L+2(+16%)
	273.9	4.53	0.2988	H-2→L+3(+36%), H-3→L+2(+33%), H-1→L+4(+15%)
	270.2	4.59	0.0515	H-3→L+3(+56%), H-1→L+5(+21%), H-4→L+1(+18%)
	268.1	4.62	0.0978	H-0→L+5(+42%), H-2→L+1(+20%), H-6→L+0(+17%)
	267.4	4.64	0.0812	H-1→L+5(+40%)
	263.5	4.70	0.0478	H-3→L+4(+57%), H-6→L+0(+32%)
	262.4	4.72	0.0138	H-4→L+1(+41%), H-4→L+2(+31%), H-2→L+4(+21%)
	261.9	4.73	0.1681	H-2→L+5(+43%), H-4→L+2(+31%), H-6→L+0(+29%)
	257.5	4.82	0.0081	$H-2 \rightarrow L+5(+44\%), H-4 \rightarrow L+1(+26\%), H-3 \rightarrow L+4(+14\%)$
	255.8	4.85	0.0131	H-6→L+0(+48%), H-4→L+1(+12%)
	255.2	4.86	0.0168	H-4→L+3(+44%), H-5→L+1(+23%), H-3→L+5(+19%)
	252.8	4.90	0.3876	$H-5 \rightarrow L+1(+47\%), H-5 \rightarrow L+2(+34\%), H-2 \rightarrow L+3(+18\%)$
^a H = HOMO	L = LUMO,	H-n = HOMO	-n and L+n =	LUMO+n.

11. NMR

¹H NMR (CDCl₃, 400 MHz) spectrum of **3a**

¹H NMR (CDCl₃, 400 MHz) spectrum of T12

¹H NMR (CDCl₃, 400 MHz) spectrum of T14

¹H NMR (CDCl₃, 400 MHz) spectrum of T16

¹H NMR (CDCl₃, 400 MHz) spectrum of **DTPTB12**

¹H NMR (CDCl₃, 400 MHz) spectrum of **DTPTB14**

¹H NMR (CDCl₃, 600 MHz) spectrum of **DTPTB16**

¹H NMR (CDCl₃, 400 MHz) spectrum of 5a

¹H NMR (CDCl₃, 400 MHz) spectrum of **5b**

¹H NMR (CDCl₃, 400 MHz) spectrum of 5c

¹H NMR (CDCl₃, 400 MHz) spectrum of 6a

¹H NMR (CDCl₃, 400 MHz) spectrum of **6b**

¹H NMR (CDCl₃, 400 MHz) spectrum of 7a

¹H NMR (CDCl₃, 400 MHz) spectrum of 7b

(CDCl₃, 400 MHz) spectrum of 7c

¹H NMR (CDCl₃, 400 MHz) spectrum of D12

¹H NMR (CDCl₃, 400 MHz) spectrum of **DTPTA8**

¹H NMR (CDCl₃, 400 MHz) spectrum of DTPTA10

¹H NMR (CDCl₃, 400 MHz) spectrum of DTPTA12

¹³C NMR (CDCl₃, 101 MHz) spectrum of T12

¹³C NMR (CDCl₃, 101 MHz) spectrum of T14

¹³C NMR (CDCl₃, 101 MHz) spectrum of **D8**

¹³C NMR (CDCl₃, 101 MHz) spectrum of **D12**

¹³C NMR (CDCl₃, 101 MHz) spectrum of **DTPTA10**

¹³C NMR (CDCl₃, 101 MHz) spectrum of **DTPTA12**

Figure S10. NMR spectra.

12. HRMS

HRMS of T16

HRMS of DTPTB12

HRMS of DTPTA8

HRMS of DTPTA12

Figure S11. HMRS spectra.