Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

A nano-truncated Ni/La doped manganese spinel material for high rate

performance and long cycle life lithium-ion batteries

Meng Li,^{ab1} Yan Li,^{ab1} Yujiao Guo,^{ab} Junming Guo,^{*ab} Mingwu Xiang, ^{*ab} Wei Bai,^{ab} Xiaofang Liu^{ab} and Hongli Bai^{ab}

^a National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, China

^b Key Laboratory of Green-chemistry Materials in University of Yunnan Province, Yunnan Minzu University, Kunming, 650500, China

¹ Meng Li and Yan Li are co-first authors of the article.

corresponding author E-mail addresses: guojunming@tsinghua.org.cn (J. M. Guo), xmwbboy@163.com (M. W. Xiang).

Fig. S1. XRD patterns of the $LiNi_{0.08}La_xMn_{1.92-x}O_4$ (x=0, 0.01, 0.02, 0.04, 0.06, 0.08) samples.

Fig. S2. SEM images of the LiNi_{0.08}La_xMn_{1.92-x}O₄ samples: (a) x=0, (b) x=0.01, (c) x=0.02, (d) x=0.04, (e) x=0.06 and (f) x=0.08.

Fig. S3. first charge/discharge curves of the LiNi_{0.08}La_xMn_{1.92-x}O₄ (x=0, 0.01, 0.02, 0.04, 0.06, 0.08) samples at 1 C.

Fig. S4. rate performances of the LiNi_{0.08}La_xMn_{1.92-x}O₄ (x=0, 0.01, 0.02, 0.04, 0.06, 0.08) samples.

Fig. S5. cycling performances of the LiNi_{0.08}La_xMn_{1.92-x}O₄ (x=0, 0.01, 0.02, 0.04, 0.06, 0.08) samples at 1 C.

Fig. S6. cycling performances of the LiNi_{0.08}La_xMn_{1.92-x}O₄ (x=0, 0.01, 0.02, 0.04, 0.06, 0.08) samples at 5 C.

Fig. S7. cycling performances of the LiNi_{0.08}La_xMn_{1.92-x}O₄ (x=0, 0.01, 0.02, 0.04, 0.06, 0.08) samples at 10 C.

The calculation of the lithium ion diffusion coefficient (D_{Li}^+) :

The corresponding Randles-Sevcik formula is as follows:1

$$i_{\rm p} = (2.69 \times 10^5) n^{3/2} C_{\rm Li}^{+} A D_{\rm Li}^{1/2} v^{1/2}$$
 (25°C) (1)

in the equation, i_p stands the peak current value (A), the electron transfer number n is 1, C_{Li}^+ denotes the Li⁺ volume concentration (0.024 mol·cm⁻³), A means the electrode superficial area (2.01

cm²), and v is the scan speed (V·s⁻¹). The D_{Li}^+ value is computed though the fitting linear connection between i_p and $v^{1/2}$ (Fig. S8).

Fig. S8. Fitting plots about peak current vs. square root of scan rate for $LiNi_{0.08}Mn_{1.92}O_4$ and $LiNi_{0.08}La_{0.01}Mn_{1.91}O_4$ samples.

The calculation of the apparent activation energy (E_a) :

The E_a value is calculated on the basis of EIS data at different temperatures from the following formulas:²

$$i_0 = RT/nFR_{ct}$$
 (2)

$$i_0 = \operatorname{Aexp}(-E_a/\operatorname{RT})$$
 (3)

where, i_0 expresses exchange current (A), the gas constant value of R is 8.314 J·mol⁻¹·K⁻¹, T means absolute temperature (K), the electron transfer number n is 1, the Faraday constant value of F is 96484.5 C·mol⁻¹, and A is an independent coefficient of temperature. According to the aforementioned (2) and (3) formulas, the E_a can be stated as E_a =-Rkln10 (k denotes the slope of the fitting line in Fig. S9). The E_a value can be further calculated.

Fig. S9. Arrhenius plots about log_{i_0} vs. 1000T⁻¹ for LiNi_{0.08}Mn_{1.92}O₄ and LiNi_{0.08}La_{0.01}Mn_{1.91}O₄ samples.

References

- 1 Y. J. Cai, Y. D. Huang, X. C. Wang, D. Z. Jia, W. K. Pang, Z. P. Guo, Y. P. Du, X and C. Tang, J. Power Sources, 2015, 278, 574–581.
- 2 S. L. Chou, J. Z. Wang, H. K. Liu, S. X. Dou, J. Phys. Chem. C, 2011, 115, 16220–16227.