Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Information for

Binder-free δ -MnO₂@reduced graphene oxide composite film as a bi-functional

electrode for aqueous rechargeable sodium-ion battery and hybrid capacitive

deionization

Jun Wang^a, Daile Zhang^b, Xiaomin Hu^{a*} and Ting Sun^{b*}

^a College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China

^b College of Sciences, Northeastern University, Shenyang 110819, China

*Corresponding author: <u>hxmin_jj@163.com</u> (Xiaomin Hu), <u>sun1th@163.com</u> (Ting Sun)

Calculations of deionization performance

$$SAC = \frac{(C_0 - C)V}{m}$$
(1)
$$ASAR = \frac{SAC}{t}$$
(2)

where V (mL) is the volume and m (mg) represent the total electrode mass. Meanwhile, C_0 and C (mg g⁻¹) refer to the initial and equilibrium concentrations of the NaCl solution, respectively. In addition, t (min) is the charging time for the desalination process.

$$\Lambda = \frac{SAC \times F}{1000 \times 58.44 \times \Sigma} \qquad (3)$$

where F is Faraday constant (96485 C mol⁻¹), 58.44 is the molar mass of NaCl and Σ is integral charge during the desalination process (charge, C g⁻¹).

Fig. S1 (a) Schematic illustration of batch mode HCDI unit and internal structure and (b) Photographical image of HCDI experimental set up.

Fig. S2 XRD patterns of δ -MnO₂@rGO/CC sample.

Fig. S3 EDS elemental mapping of δ-MnO₂@rGO/CC sample.

Fig. S4 CVs of AC (a) and δ -MnO₂@rGO/CC//AC in full cell system (b).

Fig. S5 (a) CVs of δ -MnO₂@rGO/CC electrodes at 2-50 mV s⁻¹ in 1 M NaCl solution, (b) GCD curves of δ -MnO₂@rGO/CC electrodes at 50-2000 mA g⁻¹ in 1 M NaCl solution.

Fig. S6 Electrochemical impedance spectra of the as prepared δ -MnO₂@rGO/CC electrode in 1M NaCl solution.

Fig. S7 (a-d) Electro-adsorption equilibrium curves of different feed concentrations, (e) Correlative curves of NaCl concentration (mg L⁻¹) corresponding to conductivity (μ S cm⁻¹), (f) The curves of desalination amount vs. charging time of the δ -MnO₂@rGO/CC electrode.

Fig. S8 (a) Cycling performance of 50-70 cycles, (b) Corresponding deionization capacity and charge efficiency response.

Electrode	Rs	CPE-T	CPE-P	R _{ct}	σ	D _{Na}
	(Ω)			(Ω)		$(cm^2 s^{-1})$
δ-MnO2@rGO/CC	4.89	8.77×10-4	0.99	0.95	2.30	2.52×10-4

Table S1. Obtained impedance parameters and D_{Na} values of the δ -MnO₂@rGO/CC by EIS.

Table S2. Comparison of deionization performance of various MnO_2 electrodes reported in the literature.

Electrode	Applied voltage (V)	SAC (mg g ⁻¹)	Cycle number	Ref.
δ-MnO2@rGO/CC	1.2	19.8	50	this work
MnO ₂ /NPC	1.2	0.99	10	1
MnO ₂ /PSS/CNT	1.2	4.7	10	2
GNS@MnO2	1.2	5.01	50	3
ep-AC@MnO2	1.2	25.7	30	4
GO/PPy/MnO2	1.2	38.4	30	5
Mn-Fe-PBAs/CC	1.0	14.47	30	6
MnO ₂ /AC	1.0	9.3	30	7
MnO ₂ /MWCNTs	1.2	6.65	-	8

References

- 1 J. Yang, L. Zou, H. Song and Z. Hao, *Desalination*, 2011, **276**, 199–206.
- 2 J. Yang, L. Zou and H. Song, *Desalination*, 2012, **286**, 108–114.
- 3 A. G. El-Deen, N. A. M. Barakat and H. Y. Kim, *Desalination*, 2014, **344**, 289–298.
- Y. Liu, B. Geng, Y. Zhang, X. Gao, X. Du, X. Dou, H. Zhu and X. Yuan, *Desalination*, 2021, 504, 114977.
- 5 Y. Zhang, Y. Wang, J. Xue and C. Tang, *Ind. Eng. Chem. Res.*, 2022, **61**, 3582.
- 6 X. Zhang and J. Dutta, ACS Appl. Energy Mater., 2021, 4, 8275–8284.
- 7 Y. H. Liu, H. C. Hsi, K. C. Li and C. H. Hou, ACS Sustain. Chem. Eng., 2016, 4, 4762–4770.
- B. Chen, Y. Wang, Z. Chang, X. Wang, M. Li, X. Liu, L. Zhang and Y. Wu, *RSC Adv.*, 2016, 6, 6730–6736.