Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

ARTICLE

Supporting Information for Structure-based design and synthesis of copper (II) complexes as antivirus drug candidates targeting the SARS CoV-2 and HIV Sunil Kumar^a, and Mukesh Choudhary^a*

^a Department of Chemistry, National Institute of Technology Patna, Patna-800005 (Bihar) India.

^{a.} *Corresponding author: <u>mukesh@nitp.ac.in</u>

Figure S3. HOMO-LUMO energies and energy gap of copper (II) complex $[Cu(L^2)_2)](2)$.

Figure S4. MEPs presentation including (a) radical frontier density,
(b) electrophilic and nucleophilic frontier density (c) surface density for copper (II) complex [Cu(L¹)₂)](1) and [Cu(L²)₂)](2).

Figure S1. The experimental and quantum chemically optimized geometries of copper(II)complex $[Cu(L^1)_2](1)$ and $[Cu(L^2)_2](2)$.

ure S5. Packing cell diagrams mapped with energy framework for complex $[Cu(L^1)_2](1)$ and complex $[Cu(L^2)_2](2)$ viewed down the a-c axis.

	[Cu(L ¹) ₂)](1)										
	N	Symop	R	Electron Density	E_ele	E_pol	E_dis	E_rep	E_tot		
	2	х, у, z	9.28	HF/3-21G	-9.0	0.0	-54.5	21.8	-40.6		
	2	х, у, z	15.54	HF/3-21G	0.0	-1.9	0.0	0.0	-1.2		
	4	-x+1/2, y+1/2, -z+1/2	8.42	HF/3-21G	-31.3	-8.0	-73.2	46.6	-65.2		
	2	х, у, z	12.46	HF/3-21G	0.0	-1.6	0.0	0.0	-1.0		
	4	-x+1/2, y+1/2, -z+1/2	11.39	HF/3-21G	-4.1	0.0	-14.2	3.7	-13.9		
-											

Energy Model	k_ele	k_pol	k_disp	k_rep
CE-HF HF/3-21G electron densities	1.019	0.651	0.901	0.811
CE-B3LYP B3LYP/6-31G(d,p) electron densities	1.057	0.740	0.871	0.618

$[Cu(L^2)_2](2)$

	N	Symop	R	Electron Density	E_ele	E_pol	E_dis	E_rep	E_tot	
	2	x, y, z	14.14	HF/3-21G	0.0	-0.4	0.0	0.0	-0.3	
	4	-x, y+1/2, -z+1/2	11.91	HF/3-21G	-6.2	-1.2	-31.4	24.6	-15.4	
	4	-x, y+1/2, -z+1/2	8.35	HF/3-21G	-25.2	-5.9	-78.8	45.9	-63.3	
	2	x, y, z	10.98	HF/3-21G	10.5	-4.4	-31.4	11.1	-11.5	

Energy Model	k_ele	k_pol	k_disp	k_rep
CE-HF HF/3-21G electron densities	1.019	0.651	0.901	0.811
CE-B3LYP B3LYP/6-31G(d,p) electron densities	1.057	0.740	0.871	0.618

Figure S6 CE-B3LYP estimates of energy components and total energies (kJ/mol) for the closest intermolecular interactions in the complex $[Cu(L^1)_2](1)$ and complex $[Cu(L^2)_2](2)$.

Figure S7. The representation of docked copper (II) complex $[Cu(L^1)_2)](1)$ with SARS-CoV-2 main protease for COVID-19 (PDB ID: 6XBG) (PDB ID: 6XBG) with an inhibitor UAW246 with its focused view for interacting residues along with H-bond and intermolecular interactions; (a) H-bond donor and acceptor meshes represented by pink and light green colours, respectively; (b) Aromatic receptor surface represented by blue (Edge) and light orange (face) colours; (c) Hydrophobic pocket represented with blue and brown colours; (d) interpolated charge receptor surface represented by blue and red colours; (e) ionizability receptor surface represented by blue (basic) and red (acidic) colours; (f) SAS receptor surface represented by blue and light green colours, respectively.

Figure S8. The representation of docked copper (II) complex $[Cu(L^2)_2)](2)$ with SARS-CoV-2 main protease for COVID-19 (PDB ID: 6XBG) (PDB ID: 6XBG) with an inhibitor UAW246 with its focused view for interacting residues along with H-bond and intermolecular interactions; (a) H-bond donor and acceptor meshes represented by pink and light green colours, respectively; (b) Aromatic receptor surface represented by blue (Edge) and light orange (face) colours; (c) Hydrophobic pocket represented with blue and brown colours; (d) interpolated charge receptor surface represented by light blue and light red colours; (e) ionizability receptor surface represented by light blue (basic) and light red (acidic) colours; (f) SAS receptor surface represented by blue and light green colours, respectively.

Giy262 Asn255 H-Sonds

Figure S9. The representation of docked copper (II) complex $[Cu(L^1)_2)](1)$ inside the HIV-1 virus (PDB ID: 1JLE) with its focused view for interacting residues along with H-bond and intermolecular interactions; (a) H-bond donor and acceptor meshes represented by pink and light green colours, respectively; (b) Aromatic receptor surface represented by blue (Edge) and light orange (face) colours; (c) Hydrophobic pocket represented with blue and light brown colours; (d) interpolated charge receptor surface represented by pinkish blue and light red colours; (e) ionizability receptor surface represented by light blue (basic) and light red (acidic) colours; (f) SAS receptor surface represented by deep blue and light green colours, respectively.

ARTICLE

Figure S10. The representation of docked copper (II) complex $[Cu(L^2)_2)](2)$ inside the HIV-1 virus (PDB ID: 1JLE) with its focused view for interacting residues along with H-bond and intermolecular interactions; (a) H-bond donor and acceptor meshes represented by pink and light green colors, respectively; (b) Aromatic receptor surface represented by blue (Edge) and light orange (face) colors; (c) Hydrophobic pocket represented with blue and light brown colors; (d) interpolated charge receptor surface represented by light blue and light red colors; (e) ionizability receptor surface represented by light blue (basic) and light red (acidic) colors; (f) SAS receptor surface represented by deep blue and light green colors, respectively.

Figure S11. The representation of docked copper (II) complex $[Cu(L^1)_2)](1)$ inside the HIV-1 RNA virus (PDB ID: 1UUD) with its focused view for interacting residues along with H-bond and intermolecular interactions; (a) H-bond donor and acceptor meshes represented by pink and light green colours, respectively; (b) Aromatic receptor surface represented by cyanic blue (Edge) and light orange (face) colours; (c) Hydrophobic pocket represented with light blue and brown colours; (d) interpolated charge receptor surface represented by blue and red colours; (e) ionizability receptor surface represented by blue (basic) and red (acidic) colours; (f) SAS receptor surface represented by blue and light green colours, respectively.

gure S12. The representation of docked copper (II) complex $[Cu(L^2)_2)](2)$ inside the HIV-1 RNA virus (PDB ID: 1UUD) with its focused view for interacting residues along with H-bond and intermolecular interactions; (a) H-bond donor and acceptor meshes represented by pink and light green colours, respectively; (b) Aromatic receptor surface represented by blue (Edge) and orange (face) colours; (c) Hydrophobic pocket represented with light blue and light brown colours; (d) interpolated charge receptor surface represented by light blue and red colours; (e) ionizability receptor surface represented by light blue (basic) and red (acidic) colours; (f) SAS receptor surface represented by blue and light green colours, respectively.

Table	S1.	Experimental	and	optimized	values	of	the	studied	
complex copper complex $[Cu(L^1)_2](1)$ and $[Cu(L^2)_2](2)]$.									

Complexes	Experimental	bond	Theoretical bo	nd lengths
	lengths (Å)		(Å)	
(1)	Cu(1)-O(1)	1.9007	Cu(1)-O(1)	1.9005
	Cu(1)-N(1)	2.0037	Cu(1)-N(1)	2.0042
	Cl(1)-C(6)	1.7395	Cl(1)-C(6)	1.7394
	Cl(2)-C(4)	1.7207	Cl(2)-C(4)	1.7209
(2)	Cu(2)-O(1)	1.897	Cu(2)-O(1)	1.891
	Cu(2)-N(1)	2.000	Cu(2)-N(1)	2.005
	Br(3)-C(6)	1.898	Br(3)-C(6)	1.897
	Br(2)-C(9)	1.889	Br(2)-C(9)	1.890

		Experimental bond		Docked complex inside		Docked complex	
Comp	lexes	lengths (A)		SARS-CoV-2		inside HIV-1 bond	
				bond lengths (Å)		lengths (Å)	
	6XBG	Cu(1)-O(1)	1.9007	Cu(1)-O(1)	1.9015	Cu(1)-O(1)	1.9018
(1)		Cu(1)-N(1)	2.0037	Cu(1)-N(1)	2.0027	Cu(1)-N(1)	2.0034
		Cl(1)-C(6)	1.7395	Cl(1)-C(6)	1.7389	Cl(1)-C(6)	1.7387
		Cl(2)-C(4)	1.7207	Cl(2)-C(4)	1.7219	CI(2)-C(4)	1.7213
	1JLE	Cu(1)-O(1)	1.9007	Cu(1)-O(1)	1.9013	Cu(1)-O(1)	1.9011
		Cu(1)-N(1)	2.0037	Cu(1)-N(1)	2.0032	Cu(1)-N(1)	2.0044
		Cl(1)-C(6)	1.7395	Cl(1)-C(6)	1.7384	Cl(1)-C(6)	1.7405
		Cl(2)-C(4)	1.7207	Cl(2)-C(4)	1.7215	CI(2)-C(4)	1.7213
	1UUD	Cu(1)-O(1)	1.9007	Cu(1)-O(1)	1.9021	Cu(1)-O(1)	1.9012
		Cu(1)-N(1)	2.0037	Cu(1)-N(1)	2.0029	Cu(1)-N(1)	2.0049
		Cl(1)-C(6)	1.7395	Cl(1)-C(6)	1.7388	Cl(1)-C(6)	1.7409
		Cl(2)-C(4)	1.7207	Cl(2)-C(4)	1.7216	CI(2)-C(4)	1.7211
	6XBG	Cu(2)-O(1)	1.897	Cu(2)-O(1)	1.889	Cu(2)-O(1)	1.896
(2)		Cu(2)-N(1)	2.000	Cu(2)-N(1)	2.008	Cu(2)-N(1)	2.006
		Br(3)-C(6)	1.898	Br(3)-C(6)	1.891	Br(3)-C(6)	1.896
		Br(2)-C(9)	1.889	Br(2)-C(9)	1.894	Br(2)-C(9)	1.897
	1JLE	1JLE Cu(2)-O(1) 1		Cu(2)-O(1)	1.898	Cu(2)-O(1)	1.891
		Cu(2)-N(1)	2.000	Cu(2)-N(1)	2.007	Cu(2)-N(1)	2.004
		Br(3)-C(6)	1.898	Br(3)-C(6)	1.887	Br(3)-C(6)	1.902
		Br(2)-C(9)	1.889	Br(2)-C(9)	1.891	Br(2)-C(9)	1.887
	1UUD	Cu(2)-O(1)	1.897	Cu(2)-O(1)	1.902	Cu(2)-O(1)	1.898
		Cu(2)-N(1)	2.000	Cu(2)-N(1)	2.005	Cu(2)-N(1)	2.003
		Br(3)-C(6)	1.898	Br(3)-C(6)	1.896	Br(3)-C(6)	1.894
		Br(2)-C(9)	1.889	Br(2)-C(9)	1.893	Br(2)-C(9)	1.908

Table S2. The structure activity relationship established between the structures of the copper complex $[Cu(L^1)_2](1)$ and $[Cu(L^2)_2](2)$ and their potential applications against SARS-CoV-2 main protease (M^{pro}) and HIV inhibitors.

ARTICLE