Supplementary Information

Lignin condensation inhibition and antioxidant activity improvement in a reductive ternary DES fractionation microenvironment by thiourea dioxide self-decomposition

Xin Zhaoa, Yingying Yanga, Jingyu Xua, Xing Wanga,b,*, Yanzhu Guoa, Chao Liuc, Jinghui Zhoua

a Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China

b Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China

c Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China

*Corresponding author.

E-mail: wangxing@dlpu.edu.cn

*Authors contributed equally to the production of this paper.
Figure S1. Quantitative 13C NMR spectra of EHL, binary DES lignin and ternary DES lignin.

Figure S2. Aqueous potentiometric titration curves of lignin samples. Blue curves: PH; Magenta curves: level-one differential quotient of PH curve.
Figure S3. Molecular weights of extracted lignin fractions.