Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Information

High-efficiency Radon Adsorption by Nickel Nanoparticles Supported on Activated Carbon

Xiangyuan Deng^{a,b,c}, Bo Yu^{a,b}, Haibiao Wu^{a,b}, Zhengzhong He^{a,b}, Meng Wang^{a,*}, Detao Xiao^{a,b,*}

^a School of Nuclear Science and Technology, University of South China, Hengyang 421001, Hunan, China.

^b Radon Key Laboratory of Hunan Province, University of South China, Hengyang 421001, Hunan, China.

^c School of Mathematics and Physics, University of South China, Hengyang 421001, Hunan, China.

* Corresponding authors.

E-mail address: wmeng020321@163.com (Meng Wang), xiaodt@usc.edu.cn (Detao Xiao).

Fig. S1. Adsorption test instruments.

Fig. S2. Adsorption test diagram

Fig. S3. (a) N_2 adsorption-desorption isotherms; (b) Micropore distribution; (c) Mesopore distribution.

Fig. S4. TG curves of Ni/AC-800 and AC.

Fig. S5. Rn absorption of samples heated and regenerated in air.

Samples	BET surface area $(m^2 \cdot g^{-1})$	Area of micropore $(m^2 \cdot g^{-1})$	Total pore volume(cm ³ ⋅g ⁻¹)	Micropore volume(cm ³ ⋅g ⁻¹)	S _{micro} /S _{BET} (%)
AC	662.45	572.96	0.324	0.270	83.33
Ni/AC-600	541.22	464.72	0.270	0.218	80.74
Ni/AC-700	579.75	509.72	0.287	0.240	83.62
Ni/AC-800	611.50	536.75	0.300	0.254	84.67
Ni/AC-900	575.64	512.82	0.284	0.242	85.21

Structural parameters of all obtained samples.

Table S2.

Rn adsorption properties of samples at different temperatures.

Test temperature (°C)	Adsorption coefficient $(m^3 \cdot kg^{-1})$							
	AC	Ni/AC-600	Ni/AC-700	Ni/AC-800	Ni/AC-900			
20	5.39±0.11	6.61±0.15	7.03±0.11	8.01±0.13	7.26±0.13			
25	4.43±0.13	5.42±0.13	5.77±0.10	6.56±0.14	5.97±0.12			
30	3.36±0.10	4.35±0.13	5.01±0.13	5.49±0.10	5.25±0.15			
Table S3. Analysis of the valence of nickel on the surface of Ni/AC-800 heated at 120°C for 8 h.								
Samples	Ni ⁰ (%)		Ni ²⁺ (%)	Ni ³⁺ (%)				
Ni/AC-800		27.0		13.5				
Ni/AC-800-1*		20.9		21.5				

Ni/AC-800-1 heated and regenerated in air