Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Synergistic coupling of FeOOH with Mo-incorporated NiCo LDH

towards enhancing the oxygen evolution reaction

Hang Luo^{a,b}, Jin Liang^{a,b*}, Jialin Zhou^b, Zhao Yin^{a,b}, Ziyi Zhang^b, Xiubo Liu^{a,b}

^aHunan Province Key Laboratory of Materials Surface & Interface Science and Technology, ^bCollege of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China.

*Corresponding author: <u>ljcfstu@163.com</u>

Fig. S1 The CV curves of (a) NF, (b) FeOOH/NF, (c) NiCo LDH/NF, (d) NiCoMo LDH/NF, (e) FeOOH-NiCoMo LDH/NF.

Fig. S2 (a) CV of samples at a scan rate of 5 mV·s⁻¹ without *iR compensation* in 1.0 mol/L KOH, (b) Partial enlargement of CV.

Fig. S3 XPS spectra of FeOOH-NiCoMo LDH/NF. (a) XPS survey spectrum, (b) Ni 2p, (c) Co 2p, (d) Mo 3d, (e) Fe 2p, (f) O 1s XPS high resolution spectrum of FeOOH-NiCoMo LDH/NF after long-term stability test in 1.0 M KOH.

Fig. S4 XPS spectra of FeOOH-NiCoMo LDH/NF. (a) XPS survey spectrum, (b) Ni 2p, (c) Co 2p, (d) Mo 3d, (e) Fe 2p, (f) O 1s XPS high resolution spectrum of FeOOH-NiCoMo LDH/NF after stability test in 1.0 M KOH and 0.5 M NaCl aqueous solution.

		5,0	57	
Catalyst	medium	η_j /mV	j/mA·cm ⁻²	Reference
FeOOH-	alkaline	256	50	Our work
NiCoMo		275	100	
LDH/NF		333	500	
NiCo	alkaline	260	10	1
LDH/ZnCo ₂ O ₄				
Co/NCP@NiCo	alkaline	277	10	2
LDHs				
CoNiN@NiFe	alkaline	227	10	3
LDH		291	100	
NiSe@CoFe	alkaline	203	10	4
LDH		236	100	
NiFeCr	alkaline	1.50 (vs. RHE)	10	5
LDH/MoS ₂				
NiFe	alkaline	261	50	6
LDH@Mo-				
NiS-NiS ₂				
CoFeMo LDH	alkaline	240	100	7
		350	500	
FeOOH@CC	alkaline	257.8	50	8
FeOOH/CoP	alkaline	250	10	9

Table. S1 Comparison of the electrocatalytic activity of FeOOH-NiCoMo LDH/NFelectrocatalysts with several catalysts have been reported recently (η_j : Overpotential at the applied
current density; j: Current density)

Table. S2 Summary of EIS fitting results for oxygen evolution reaction

Catalysts	$R_{ct}(\Omega)$	$\mathrm{R}_{\mathrm{s}}\left(\Omega ight)$
FeOOH-NiCoMo LDH/NF	0.675	1.096
NF	187.9	1.996
FeOOH/NF	16.16	1.482
NiCo LDH/NF	46.32	1.514
NiCoMo LDH/NF	4.994	1.372

Reference

- 1. M. Shamloofard, S. Shahrokhian and M. K. Amini, *Journal of Colloid and Interface Science*, 2021, **604**, 832-843.
- Z. Chen, Y. Zhang, P. Yang, W. Xiong, X. Ren, Y. Li, L. Wang, S. Ye, J. Liu and Q. Zhang, *Journal of Alloys and Compounds*, 2022, 890, 161805.
- 3. J. Wang, G. Lv and C. Wang, *Applied Surface Science*, 2021, **570**, 151182.
- F. Nie, Z. Li, X. Dai, X. Yin, Y. Gan, Z. Yang, B. Wu, Z. Ren, Y. Cao and W. Song, Chemical Engineering Journal, 2022, 431, 134080.
- 5. S. Chen, C. Yu, Z. Cao, X. Huang, S. Wang and H. Zhong, *International Journal of Hydrogen Energy*, 2021, **46**, 7037-7046.
- Y. Li, T. Dai, Q. Wu, X. Lang, L. Zhao and Q. Jiang, *Materials Today Energy*, 2022, 23, 100906.
- 7. Y. Ding, X. Du and X. Zhang, *Dalton Transaction*, 2020, 49, 15417-15424.
- W. Tang, G. Zhang and Y. Qiu, *International Journal of Hydrogen Energy*, 2020, 45, 28566-28575.
- 9. J. Cheng, B. Shen, Y. Song, J. Liu, Q. Ye, M. Mao and Y. Cheng, *Chemical Engineering Journal*, 2022, **428**, 131130.