Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Information

A two-dimensional thin Co-MOF nanosheet as nanozyme with high

oxidase-like activity for GSH detection

Miaomiao Han, Mengzhen Ren, Zhaohui Li , Lingbo Qu, Lanlan Yu*

College of Chemistry, Zhengzhou Key Laboratory of Functional Nanomaterial and

Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P.R. China

Fig. S1 The TEM image of M-ZIF-67.

Fig. S2 The EDS mapping analysis of D-ZIF-67.

Fig. S3 The effect of reaction time (a); pH of acetic acid buffer (b); concentration of D-ZIF-

Fig. S4 Steady-state kinetics assay of M-ZIF-67.

Fig. S5 The influence of potential interferent substances on the GSH detection. The concentrations of GSH, Cys, Hcy, AA, and SO_3^{2-} are 10 μ M and those of others are 100 μ M.

Material	Measurement method	Linear range	LOD	Ref.
MnO ₂ nanosheets	Colorimetry	1-25µM	300 nM	1
Ir/NC	Colorimetry	0.05-15 μM	0. 5 μΜ	2
PSMOF	Colorimetry	0-20 µM	0.68 µM	3
gold nanoclusters	Colorimetry	2-25 μM	420 nM	4
Fe ₃ O ₄ magnetic nanoparticles	Colorimetry	3-30 µM	3 µM	5
UiO-66(NH ₂)	Colorimetry	5-120 μΜ	310 nM	6
carbon dots–MnO ₂ nanocomposites	Fluorimetry	1-10 µM	300 nM	7
quantum-dot	Fluorimetry	5-250 μM	0.6 μΜ	8
graphene quantum dot–MnO ₂ nanosheet	Fluorimetry	0.5-10 μΜ	150 nM	9
conjugated polymer-Cu (II)	Fluorimetry	0.1-15 μM	40 nM	10
core–shell CdSe/ZnS quantum dots/Nafifion composite fifilms	Electrochemical method	10-180 μΜ	1.5 μΜ	11
MoS ₂ Nanosheet	Electrochemical method	0.01-500 mM	703 nM	12
Fe(CN) ₆ ^{3-/4-} /carbon dots	Electrochemical method	0.1-1.0 μΜ	54.3 nM	13
D-ZIF-67	Colorimetry	0.5-10 μΜ	229.2 nM	This work

Table S1 Comparison of different GSH detection methods.

Notes and references

- 1 J. Liu, L. Meng, Z. Fei, P. Dyson, X. Jing and X. Liu, Biosens. Bioelectron., 2017, 90, 69-74.
- 2 M. Huang, H. Wang, D. He, P. Jiang and Y. Zhang, Chem. Commun., 2019, 55, 3634–3637.
- 3 Y. Liu, M. Zhou, W. Cao, X. Wang, Q. Wang, S. Li and H. Wei, *Anal. Chem.*, 2019, **91**, 8170–8175.
- 4 J. Feng, P. Huang, S. Shi, K. Deng and F. Wu, Anal. Chim. Acta, 2017, 967, 64-69.
- 5 Y. Ma, Z. Zhang, C. Ren, G. Liu and X. Chen, Analyst, 2012, 137, 485–489.
- 6 Z. Hu, X. Jiang, F. Xu, J. Jia, Z. Long and X. Hou, *Talanta*, 2016, 158, 276–282.

- 7 Q. Cai, J. Li, J. Ge, L. Zhang, Y. Hu, Z. Li and L. Qu, Biosens. Bioelectron., 2015, 72, 31-36.
- 8 J. Liu, C. Bao, X. Zhong, C. Zhao and L. Zhu, Chem. Commun., 2010, 46, 2971-2973.
- 9 X. Yan, Y. Song, C. Zhu, J. Song, D. Du, X. Su and Y. Lin, ACS Appl. Mater. Interfaces, 2016, 8, 21990–21996.
- 10 H. Huang, F. Shi, Y. Li, L. Niu, Y. Gao, S. Shah and X. Su, Sens. Actuators B Chem., 2013, 178, 532–540.
- 11 L. Dennany, M. Gerlach, S. O'Carroll, T. Keyes, R. Forster and P. Bertoncello, J. Mater. Chem., 2011, 21, 13984–13990.
- 12 B. Rawat, K. Mishra, U. Barman, L. Arora, D. Pal and R. Paily, *IEEE Sens. J.*, 2020, **20**, 6937–6944.
- 13 W. Niu, R. Zhu, S. Cosnier, X. Zhang and D. Shan, Anal. Chem., 2015, 87, 11150-11156.