Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Orthogonal Approach for the Precise Synthesis of Phenylpropanoid Sucrose Esters

Li Lin Ong,^{1,2} Wong Pooi Wen Kathy,^{1,2} Surhabi Deva Raj,¹ Duc Thinh Khong,¹ Parthasarathi Panda,¹ Mardi Santoso,³ Zaher M. A. Judeh^{1,*}

¹School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 62 Nanyang Drive, N1.2-B1-14, Singapore 637459.

²Institute of Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, 61 Nanyang Drive, ABN-02b-07, Singapore 637335.

³Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya 60111, Indonesia.

Tel.: +65-6790-6738; fax: +65-6794-7553; e-mail: zaher@ntu.edu.sg

Table of Contents:

Pages

1.	Preparation of compounds 7, 15-33 and 41-61.	2-24
2.	¹ H NMR, ¹³ C NMR and COESY spectra	25-38
3.	References	38

1. Preparation of compounds 7, 15-33 and 41-61

2,1':4,6-di-O-isopropylidene sucrose 7: The synthesis of 7 was accomplished following the literature procedure¹ with a slight modification. Dry DMF (700 ml) was stirred over Drierite (36.0 g) under a nitrogen atmosphere overnight and then filtered. Finely ground sucrose (65.0g, 190 mmol) was added to the filtered DMF and the mixture was stirred. 2-Methoxypropene (86.0 ml, 898

mmol) and *p*-TsOH (82.0 mg, 0.476 mmol) were added to the stirred mixture under a nitrogen atmosphere. The solution was left to stir for a week before adding NEt₃ (7.0 ml, 50.1 mmol) to quench the reaction. DMF was evaporated off under reduced pressure and the syrup obtained was stirred with EtOAc (400 ml) for 10 minutes. The solution was then filtered, and the filtrates were dried over anhydrous MgSO₄. Finally, the yellow syrup obtained was subjected to flash chromatography using EtOAc as the eluent to give 2,1' :4,6-di-*O*-isopropylidene sucrose 7 as **a** white solid in 65% yield. Comparison of ¹H and ¹³C NMR data with the literature values¹ confirmed the product to be 2,1':4,6-di-*O*-isopropylidene sucrose 7.

6'-O-tert-butyldimethylsiloxy-2,1':4,6-di-O-isopropylidene

sucrose, 6'-O-TBS **15**: A solution of 4,6-di-Oisopropylidene sucrose **7** (1.00 g, 2.37 mmol) and DMAP (28.9 mg, 0.237 mmol) was stirred in CH_2Cl_2 (50.0 ml) at room temperature. Subsequently, NEt₃ (793 µL, 5.68 mmol) and TBSC1 (428 mg, 2.84 mmol) were also added and the reaction was then left to stir for 12 hours. The

reaction mixture was then washed twice with 10% NH₄Cl solution and the organic layer separated, dried over anhydrous MgSO₄ and evaporated. The crude product was purified using silica gel column chromatography with 1:1 EtOAc/hexane as eluent. Finally **15** was obtained in 95% yield as white solid. mp 81.5-83.6°C; ¹H NMR (300 MHz, CDCl₃): δ TBS group: 0.02 (s, 6H, (CH₃)₂Si), 0.85 (s, 9H, (CH₃)₃CSi); isopropylidene rings: δ 1.20, 1.27, 1.43, 1.48 (4 x s, 12H, 2 x (CH₃)₂C); sucrose unit: δ 3.44 (d, 1H, *J* = 12 Hz, H-5), 3.49-3.59 (m, 2H, 2 x H-1'), 3.61-370 (m, 3H, H-2, H-6, H-6'), 3.73-3.88 (m, 6H, H-3, H-4, H-6, H-3', H-6', H-3'), 4.04-4.08 (m, 2H, H-4', H-5'), 6.09 (d, 1H, H-1'); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.43, -5.22, 18.4, 19.1, 24.2, 25.3, 26.0, 29.0, 62.4, 63.6, 66.0, 66.0, 69.4, 73.3, 73.9, 78.5, 78.8, 81.5, 90.8, 100.0, 102.0, 103.2; HRMS (ESI-positive mode): *m*/z calcd. for C₂₄H₄₅O₁₁Si 537.2731; found 537.2734 [M+H]⁺.

3'-O-carboxybenzyl-6'-O-tert-butyldimethylsiloxy-2,1'-di-O-isopropylidene sucrose, 3'-O-Cbz 16: 6'-O-TBS 15 (500 g, 0.932 mmol) and DMAP (11.4 mg, 0.0932 mmol) were dissolved in CH_2Cl_2 and stirred at room temperature. After which, CbzCl (199 µL, 1.40 mmol) and TMEDA (420 µL, 2.80 mmol) were added to the stirring solution and the reaction was left to stir for 12 hours. Upon completion, the reaction was washed twice with water and the organic layer was collected and dried with anhydrous MgSO₄. CH₂Cl₂ was removed and the crude mixture was subjected to chromatographic purification using a gradient of EtOAc/hexane as eluent (starting from 8:1 Hexane /EtOAc, to 6:1 Hexane/EtOAc then to 4:1 Hexane/EtOAc). In the end, white solid product 3'-*O*-Cbz **16** was obtained in 75% yield. This reaction also gave 3',4'-di-*O*-carboxybenzyl-6'-*tert*-butyldimethylsiloxy-2,1': 4,6-di-*O*-isopropylidene sucrose, di-*O*-Cbz **17** as a white solid in 20% yield.

Analytical data for 3'-O-Cbz **16**: mp 73.3-74.9°C; ¹H NMR (300 MHz, CDCl₃): TBS group: δ 0.02 (s, 6H, (CH₃)₂Si), 0.86 (s, 9H, (CH₃)₃CSi); isopropylidene rings: δ 1.21, 1.29, 1.41, 1.43 (4 x s, 12H, 2 x (CH₃)₂C); sucrose unit: δ 3.47 (d, 1H, J = 12 Hz, H-5), 3.54-3.66 (m, 3H, H-2, 2 x H-1'), 3.68-3.85 (m, 5H, H-4, 2 x H-6, 2 x H-6') 3.94-4.01 (m, 2H, H-3, H-5'), 4.38 (t, 1H, J = 3 Hz, H-4'), 4.72 (d, 1H, J = 6 Hz, H-3'), 5.93 (d, 1H, J = 3 Hz, H-1); Cbz group: 5.19

(s, 2H, 2 x H-a), 7.30-7.40 (m, 5H, H-b, H-c, H-d, H-e, H-f); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.5, -5.3, 18.3, 19.1, 24.1, 25.5, 25.7, 25.9, 29.1, 62.3, 63.5, 65.1, 66.2, 70.0, 70.4, 73.0, 73.8, 82.0, 82.3, 90.8, 99.8, 101.6, 103.4, 128.4, 128.7, 128.7, 134.7, 155.2; HRMS (ESI-positive mode): *m*/z calcd. for C₃₂H₅₁O₁₃Si 671.3099; found 671.3102 [M+H]⁺.

Analytical data for di-O-Cbz 17: mp 80.0-82.5°C; ¹H NMR (300 MHz, CDCl₃): TBS group: δ 0.00 (s, 6H, (CH₃)₂Si), 0.83 (s, 9H, (CH₃)₃CSi); isopropylidene rings: δ 1.30, 1.32, 1.43, 1.45 (s, 12H, 2 x (CH₃)₂C); sucrose unit: δ 3.48 (d, 1H, J = 12 Hz, H-5), 3.56 (d, 1H, J = 12 Hz, H-1'), 3.61-3.69 (m, 2H, H-2, H-1'), 3.71-3.84 (m, 5H, H-4, 2 x H-6, 2 x H-6'), 4.05 (d, 1H, J = 12 Hz, H-3), 4.12-4.18 (m, 1H, H-5'), 4.91 (d, 1H, I = 6 Hz, H-3'), 5.33 (t, 1H, J = 4.5 Hz, H-4'), 5.97 (d, 1H, J = 3 Hz, H-1); Cbz groups: δ 5.17 (s, 2H, 2 x H-a), 5.12 (d, 2H, J = 15 Hz, 2 x H-a'), 7.32-7.39 (m, 10H,

H-b, H-c, H-d, H-e, H-f, H-b', H-c', H-d', H-e', H-f'); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.6, -5.4, 18.2, 19.1 62.3, 63.7, 63.8, 66.2, 70.0, 70.1, 70.3, 72.9, 73.9, 80.8, 81.1, 81.5, 91.2, 99.9, 101.6, 104.1, 128.3, 128.4, 128.6, 128.7, 134.8, 134.8, 154.0, 154.5; HRMS (ESI-positive mode): *m*/z calcd. for C₄₀H₅₇O₁₅Si 805.3467; found 805.3452 [M+H]⁺.

4'-O-para-nitrobenzoyl-3'-O-carboxybenzyl-6'-O-tert-butyldimethylsiloxy-2,1'-di-O-isopropylidene sucrose, 4'-O-PNB 18: 3'-O-Cbz 16 (500 mg, 0.746 mmol) and DMAP (9.1 mg, 0.0746 mmol) were dissolved in CH_2Cl_2 and stirred at 4 °C using an ice bath. Subsequently, NEt₃ (312 µL, 2.24 mmol) was added to the stirring solution. Then PNBCl (208 mg, 1.12 mmol) was dissolved in CH_2Cl_2 and added to the stirring solution dropwise. The reaction was left to stir for 12 hours. Upon completion, CH_2Cl_2 was removed and the crude product was purified with column chromatography using 4:1 Hexane/EtOAc as eluent. White solid 4'-O-PNB **18** was obtained in 70% yield. This reaction also gave white solid 3,4'-di-O-para-nitrobenzoyl-3'-O-carboxybenzyl-6'-O-tert-butyldimethylsiloxy-2,1'-di-O-isopropylidene sucrose (di-O-PNB) **19** in 19% yield and 3-O-para-nitrobenzoyl-3'-O-carboxybenzyl-6'-O-tert-butyldimethylsiloxy-2,1'-di-O-isopropylidene sucrose (3-O-PNB) **20** in 10% yield.

Analytical data for 4'-O-PNB **18**: mp 87.1-88.9°C; ¹H NMR (300 MHz, CDCl₃): TBS group: δ 0.00 (s, 6H, (CH₃)₂Si), 0.82 (s, 9H, (CH₃)₃CSi); isopropylidene rings: δ 1.36-1.53 (4 x S, 12H, 2 x (CH₃)₂C); sucrose unit: δ 3.54 (d, 1H, J = 15 Hz, H-5), 3.60 (d, 1H, J = 9 Hz, H-1'), 3.64-3.74 (m, 3H, H-2, H-1', H-6'), 3.80-3.86 (m, 3H, H-4, 2 x H-6, H-6'), 4.11 (d, 1H, J = 12 Hz, H-3), 4.22-4.27 (m, 1H, H-5'), 5.03 (d, 1H, J = 6 Hz, H-3'), 5.73 (t, 1H, J = 4.5 Hz, H-4'), 6.02 (d, 1H, J = 3 Hz, H-1); Cbz group: δ 5.14-5.25 (m, 2H, 2 x H-a), 7.31-7.38 (m, 5H, H-b, H-c, H-d, H-e, H-f); PNB group: δ 8.22, 8.24 (2 x d, 4H, J = 30, 9 Hz, H-a', H-b', H-

c', H-d'); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.46, -5.42, 18.2, 19.1, 25.7, 29.1, 70.0, 70.4, 72.9, 73.9, 78.9, 80.8, 81.7, 99.9, 101.7, 104.2, 123.6, 128.2, 128.6, 128.7, 130.9, 134.7, 151.0, 154.6; HRMS (ESI-positive mode): *m*/z calcd. for C₃₉H₅₄NO₁₆Si 820.3212; found 820.3218 [M+H]⁺.

Analytical data for di-O-PNB **19**: mp 95.0-96.7°C; ¹H NMR (300 MHz, CDCl₃): TBS group: δ 0.02 (s, 6H, (CH₃)₂Si), 0.82 (s, 9H, (CH₃)₃CSi); isopropylidene rings: δ 1.17-1.43 (4 x S, 12H, 2 x (CH₃)₂C); sucrose unit: δ 3.50 (d, 1H, *J* = 12 Hz, H-5), 3.71-3.74 (m, 2H, 2 x H-1'), 3.81-3.87 (m, 4H, H-2, 2 x H-6, H-6'), 3.97-4.01 (2H, m, H-4, H-6'), 4.08 (d, 1H, *J* = 6 Hz, H-5'), 4.99 (d, 1H, *J* = 3 Hz, H-3'), 5.35 (t, 1H, *J* = 12 Hz, H-4'), 5.72 (t, 1H, *J* = 4.5 Hz, H-3), 6.10 (d, 1H, *J* = 3 Hz, H-1); Cbz group: δ 5.32 (dd, 2H, *J* = 18, 12 Hz, 2 x H-a), 7.29-7.31 (m, 3H, H-c, H-d, H-e), 7.42-7.45 (m, 2H, H-b, H-f); PNB group: δ 8.11-8.18 (m, 4H, H-a',

H-b', H-c', H-d'), 8.24-8.28 (m, 4H, H-a", H-b", H-c", H-d"); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.4, -5.3, 14.1, 18.3, 18.4, 19.0, 19.1, 24.0, 25.4, 25.8, 29.0, 29.7, 29.7, 30.9, 31.9, 62.3, 63.8, 64.6, 64.9, 70.6, 71.5, 71.6, 71.8, 72.6, 82.5, 91.1, 92.0, 99.7, 99.8, 101.3, 103.7, 103.9, 123.5, 123.6, 123.7, 123.9, 127.4, 128.4, 128.5, 128.6, 128.6, 128.7, 130.7, 130.9, 131.3, 134.9, 135.7, 135.9, 150.5, 150.6, 154.6 155.2, 163.7, 164.6, 167.1; HRMS (ESI-positive mode): *m*/z calcd. for C₄₆H₅₇N₂O₁₉Si 969.3325; found 969.3352 [M+H]⁺. Analytical data for 3-O-PNB **20**: mp 85.8-86.9°C; ¹H NMR (300 MHz, CDCl₃): TBS group: δ 0.00 (s, 6H, (CH₃)₂Si), 0.83 (s, 9H, (CH₃)₃CSi); isopropylidene rings: δ 1.10-1.40 (4 x S, 12H, 2 x (CH₃)₂C); sucrose unit: δ 3.66 (d, 1H, J = 9 Hz, H-5), 3.69-3.78 (m, 2H, 2 x H-1'), 3.82-3.89 (m, 4H, H-2, H-6', 2 x H-6), 3.92-3.96 (m, 2H, H-4, H-6'), 4.06 (d, 1H, J = 12 Hz, H-5'), 4.41 (t, 1H, J = 3 Hz, H-4'), 4.73 (d, 1H, J = 6 Hz, H-3'), 5.47 (t, 1H, J = 10.5 Hz, H-3), 6.02 (d, 1H, J = 3 Hz, H-1); Cbz group: δ 5.27-5.32 (m, 2H, 2 x H-

a), 7.30-7.35 (m, 3H, H-c, H-d, H-e), 7.42-7.45 (m, 2H, H-b, H-f); PNB group: δ 8.20 (2 x d, 4H, *J* = 24, 9 Hz, H-a', H-b', Hc', H-d'); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.4, -5.3, 14.1, 18.3, 18.4, 19.0, 19.1, 24.0, 25.4, 25.8, 29.0, 29.7, 29.7, 30.9, 31.9, 62.3, 63.8, 64.6, 64.9, 70.6, 71.5, 71.6, 71.8, 72.6, 82.5, 91.1, 92.0, 99.7, 99.8, 101.3, 103.7, 103.9, 123.5, 123.6, 123.9, 127.4, 128.4, 128.5, 128.6, 128.6, 128.7, 130.7, 130.9, 134.9, 135.7, 135.9, 150.5, 155.2, 163.7, 164.6; HRMS (ESI-positive mode): *m*/z calcd. for C₃₉H₅₄NO₁₆Si 820.3212; found 820.3216 [M+H]⁺.

4'-O-para-nitrobenzoyl-3'-O-carboxybenzyl-6'-O-tert-butyldimethylsiloxy-2,1'-di-O-isopropylidene sucrose 18: This compound was also prepared as follows: Compound 21 (200 mg, 0.218 mmol) was dissolved in 1,4-dioxane (5.0 ml) and NaBH₄ (18.1 mg, 0.480 mmol) was added to it. The reaction was left stirring for 4 hours and upon completion, 1,4-dioxane was removed. The crude mixture was subjected to purification via column chromatography using 3:2 Hexane/EtOAc as eluent to give compound 18 as a white solid in 72% yield. The analytical data matched.

3-O-(4-oxopentanoyl)-4'-O-para-nitrobenzoyl-3'-O-carboxybenzyl-6'-O-tert-butyldimethylsiloxy-2,1'-di-O-isopropylidene sucrose 21: 4'-O-PNB 18 (500 mg, 0.610 mmol) and DMAP (7.5 mg, 0.0610 mmol) were dissolved in CH₂Cl₂ and stirred at room temperature. Subsequently, LevOH (75.0 μ L, 0.732 mmol) and DCC (151 mg, 0.732 mmol) were added to the stirring solution and the reaction was left to stir for 12 hours. Upon completion, CH₂Cl₂ was removed and the crude

mixture was re-dissolved in cold diethyl ether. After which, the mixture was filtered. After removing diethyl ether, the remaining crude residue was purified by column chromatography using 3:1 Hexane/EtOAc as eluent. White solid **21** was obtained in 85% yield. mp 96.1-98.9°C; ¹H NMR (300 MHz, CDCl₃): TBS group: δ 0.00 (s, 6H, (CH₃)₂Si), 0.82 (s, 9H, (CH₃)₃CSi); isopropylidene rings: δ 1.23-1.46 (4 x s, 12H, 2 x (CH₃)₂C); Lev group: 2.15 (s, 3H, 3 x H-c"), 2.59-2.61 (m, 2H, 2 x H-b"), 2.73-2.74 (m, 2H, 2 x H-a"); Cbz and sucrose unit: δ 3.49 (d, 1H, *J* = 12 Hz, H-5), 3.65-3.68 (m, 2H, 2 + 10.55).

H-4, H-1'), 3.81-3.86 (m, 5H, H-2, 2 x H-6, H-1', H-6'), 4.18 (d, 1H, J = 12 Hz, H-6'), 4.22-4.27 (m, 1H, H-5'), 4.99 (d, 1H, J = 6 Hz, H-3'), 5.23-5.29 (m, 3H, H-3, 2 x H-a), 5.71 (t, 1H, J = 3 Hz, H-4'), 6.04 (d, 1H, J = 3 Hz, H-1), 7.30-7.32 (m, 3H, H-c, H-d, H-e), 7.39-7.42 (m, 2H, H-b, H-f); PNB group: δ 8.20, 8.22 (2 x d, 4H, J = 30, 7.5 Hz, H-a', H-b', H-c', H-d'); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.45, -5.41, 5.79, 6.59, 18.2, 19.0, 23.8, 25.4, 25.8, 28.0, 29.0, 29.9, 38.1, 62.3, 63.5, 64.0, 66.4, 70.6, 71.0, 71.5, 71.8, 79.1, 81.0, 82.2, 91.7, 99.7, 101.5, 104.6, 123.6, 128.5, 130.9, 134.7, 134.9, 150.7, 154.5, 163.4, 171.6, 206.4; HRMS (ESI-positive mode): m/z calcd. for C₄₄H₆₀NO₁₈Si 918.3580; found 918.3589 [M+H]⁺.

3-O-(4-oxopentanoyl)-4'-O-para-nitrobenzoyl-3'-O-carboxybenzyl-2,1'-di-O-isopropylidene sucrose

22: Compound 21 (200 mg, 0.218 mmol) was dissolved in pyridine (1.0 ml) and stirred at room temperature. 1.56 M 3HF·NEt₃ (419 μ L, 0.654 mmol) and NEt₃ (60.9 μ L, 0.436 mmol) were added to the stirring solution and the reaction was left to stir for 12 hours. Upon completion, pyridine was removed, and the crude mixture was subjected to chromatographic purification using 3:2 Hexane/EtOAc as eluent. White solid compound 22

was obtained in 86%. mp 85.1-87.9°C; ¹H NMR (300 MHz, CDCl₃): isopropylidene rings: δ 1.25-1.43 (4 x s, 12H, 2 x (CH₃)₂C); Lev group: 2.11 (s, 3H, 3 x H-c"), 2.55-2.57 (m, 2H, 2 x H-b"), 2.68-2.70 (m, 2H, 2 x H-a"); Cbz and sucrose unit: δ 3.50 (d, 1H, J = 12 Hz, H-5), 3.61-3.66 (m, 2H, H-2, H-1'), 3.80-3.86 (m, 5H, H-4, 2 x H-6, H-1', H-6'), 4.16 (d, 1H, J = 3 Hz, H-6'), 4.19-4.20 (m, 1H, H-5'), 5.10 (d, 1H, J = 6 Hz, H-3'), 5.15-5.23 (m, 3H, H-3, 2 x H-a), 5.72 (t, 1H, J = 3 Hz, H-4'), 6.18 (d, 1H, J = 6 Hz, H-1), 7.24-7.26 (m, 3H, H-c, H-d, H-e), 7.34-7.37 (m, 2H, H-b, H-f), PNB group: δ 8.06, 8.22 (2 x d, 4H, J = 15, 9 Hz, H-a', H-b', H-c', H-d'); ¹³C NMR (75.5 MHz, CDCl₃): δ 19.0, 23.9, 24.9, 25.3, 28.0, 29.0, 29.9, 30.9, 34.0, 38.0, 61.8, 61.9, 70.7, 70.8, 71.2, 71.4, 80.4, 83.4, 91.8, 99.8, 101.9, 103.9, 123.7, 128.5, 128.6, 131.0, 134.3, 134.,8, 150.8, 154.4, 163.8, 171.6, 206.4; HRMS (ESI-positive mode): m/z calcd. for C₃₈H₄₅NO₁₈Na 826.2534; found 826.2546 [M+Na]⁺.

3-O-(4-oxopentanoyl)-4'-O-para-nitrobenzoyl-6'-O-butyldimethylsiloxy-2,1'-di-O-isopropylidene sucrose 23: Compound 21 (200 mg, 0.218 mmol) and Pd(OAc)₂ (4.1 mg, 0.0182 mmol) were dissolved in CH₂Cl₂ (5.0 ml) and stirred at room temperature. After which, Et₃SiH (46.4 mg, 0.291 mmol) and NEt₃ (4.06 μ L, 0.0291 mmol) were added and the reaction was left to stir for 12 hours.

Upon completion, CH₂Cl₂ was removed, and the crude mixture was subjected to purification using

column chromatography. 2:1 Hexane/EtOAc were used as eluent and white solid compound **23** was obtained in 68% yield. mp 84.3-85.9°C; ¹H NMR (300 MHz, CDCl₃): TBS group: δ 0.00 (s, 6H, (CH₃)₂Si), 0.78 (s, 9H, (CH₃)₃CSi); isopropylidene rings: δ 1.30-1.50 (4 x s, 12H, 2 x (CH₃)₂C); Lev group: 2.20 (s, 3H, 3 x H-c"), 2.59-2.65 (m, 2H, 2 x H-b"), 2.73- 2.82 (m, 2H, 2 x H-a"); sucrose unit: δ 3.52 (d, 1H, *J* = 12 Hz, H-5), 3.68-3.94 3.94 (m, 7H, H-2, H-4, 2 x H-6, 2 x H-1', H-6'), 4.11 (d, 1H, *J* = 9 Hz, H-6'), 4.17-4.22 (m, 2H, H-3', H-5'), 5.27 (t, 1H, *J* = H-4'), 5.55 (t, 1H, *J* = 6 Hz, H-3), 6.12 (d, 1H, *J* = 6 Hz, H-1'); PNB group: δ 8.22, 8.28 (2 x d, 4H, *J* = 15, 9 Hz, H-a', H-b', H-c', H-d'); ¹³C NMR (75.5 MHz, CDCl₃): δ -6.98, 0.6.93, -6.91, -6.85, 4.30, 5.11, 16.7, 16.8, 16.8, 17.5, 17.5, 22.4, 23.7, 24.2, 24.3, 24.3, 24.5, 26.6, 26.9, 27.5, 28.2, 28.4, 28.4, 29.5, 36.5, 60.8, 62.5 63.6, 69.4, 69.9, 70.2, 78.8, 79.4, 79.9, 89.2, 89.9, 98.3, 98.3, 100.1, 102.6, 103.3, 103.7, 122.0, 122.1, 129.5, 133.4, 133.5, 133.6 149.2, 162.5, 170.6, 206.7; HRMS (ESI-positive mode): *m*/z calcd. for C₃₆H₅₃NO₁₆NaSi 806.3031; found 806.3079 [M+Na]⁺.

3-O-(4-oxopentanoyl)-3'-O-carboxybenzyl-6'-O-butyldimethylsiloxy-2,1'-di-O-isopropylidene

sucrose 24: Compound 21 (200 mg, 0.218 mmol) was treated with Mg(OMe)₂ (65.4 μ L, 0.0218 mmol) in 8:2 MeOH/THF (5.0 ml) at 4 °C (ice bath). The reaction was closely TLC monitored with and quenched immediately with 1N HCl (43.6 µL, 0.0436 mmol) after all starting material was consumed (usually within 1 hour). MeOH/THF were removed and the crude

mixture was subjected to purification via column chromatography. 2:1 Hexane/EtOAc was used as eluent and two products – compounds **24** and **25** were obtained as white solid in 70% and 15 % yield respectively. Since compound **25** is an undesired by-product, its analytical data was not included. mp 85.0-86.9°C; ¹H NMR (300 MHz, CDCl₃): TBS group: δ 0.00 (s, 6H, (CH₃)₂Si), 0.83 (s, 9H, (CH₃)₃CSi); isopropylidene rings: δ 1.23-1.43 (4 x s, 12H, 2 x (CH₃)₂C); Lev group: 2.14 (s, 3H, 3 x H-c"), 2.56-2.58 (m, 2H, 2 x H-b"), 2.69-2.72 (m, 2H, 2 x H-a"); Cbz and sucrose unit: δ 3.44 (d, 1H, J = 12 Hz, H-5), 3.60-3.66 (m, 3H, H-2, 2 x H-1'), 3.77-3.85 (m, 4H, H-4, 2 x H-6, H-6'), 3.91-3.97 (m, 1H, H-6'), 4.04 (d, 1H, J = 12 Hz, H-5'), 4.36 (t, 1H, J = 4.5, H-4') 4.72 (d, 1H, J = 9 Hz, H-3'), 5.16-5.24 (m, 3H, H-3, 2 x H-a), 5.96 (d, J = 6 Hz, 1H, H-1'), 7.29-7.43 (m, 5H, H-b, H-c, H-d, H-e, H-f); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.44, -5.34, 18.3, 19.0, 23.9, 25.4, 28.1, 29.0, 29.9, 38.1, 62.3, 63.7, 64.9, 66.2, 70.5, 71.2, 71.5, 82.1, 82.4, 91.1, 99.6, 101.3, 103.6, 128.5, 128.7, 134.9, 155.2, 171.6, 206.4; HRMS (ESI-positive mode): *m*/z calcd. for C₃₇H₅₇NO₁₅Si 769.3467; found 769.3460 [M+H]⁺.

3-O-cinnamoyl-2,1'-di-O-isopropylidene sucrose, 3-cinn 27: Compound 41 (300 mg, 0.316 mmol) was treated with Mg(OMe)₂ (47.4 μ L, 0.158 mmol) in 8:2 MeOH/THF at room temperature for

12 hours. The reaction was quenched with 1N HCl (316 μ L, 0.316 mmol) and then evaporated to dryness. The crude mixture obtained was then re-dissolved in pyridine (1.0 ml) and stirred with a solution of 1.56 M 3HF·NEt₃ (608 μ L, 0.948 mmol) and NEt₃ (88.2 μ L, 0.632 mmol) at room temperature for another 12 hours. The mixture was evaporated to dryness and purified using column chromatography using 2:1 EtOAc/Hexane as eluent. Compound **27** was obtained as a white solid in 70% yield. mp 70.1-70.9°C; ¹H NMR (300 MHz, CDCl₃): isopropylidene rings: δ 1.34 (s, 3H, (CH₃)₂C), 1.43 (s, 3H, (CH₃)₂C), 1.50 (2 x S, 6H, (CH₃)₂C); sucrose unit: δ 3.51-3.57 (m, 1H, H-5), 3.68-4.04 (m, 9H, H-2, 2 x H-6, 2 x H-1', H-3', H-4', 2 x H-6'), 4.26 (d, 1H, *J* = 12 Hz, H-5'), 4.58-4.64 (m, 1H, H-4), 5.44 (t, 1H, *J* = 9 Hz, H-3), 6.30 (d, 1H, *J* = 3 Hz, H-1); *trans*-alkenyl and aromatic protons: δ 6.47 (d, 1H, *J* = 15 Hz, H-a"), 7.40-7.42 (m, 3H, H-d", H-e", H-f"), 7.55-7.58 (m, 2H, H-e", H-g"), 7.71 (d, 1H, *J* = 15 Hz, H-b"); ¹³C NMR (75.5 MHz, CDCl₃): δ 19.0, 24.13, 25.2, 26.0, 28.9, 61.2, 62.0, 64.1, 66.3, 71.4, 71.5, 73.3, 79.3, 83.0, 91.3, 100.1, 101.8, 103.4, 117.9, 128.2, 128.9, 130.4, 134.4, 145.2, 166.3; HRMS (ESI-positive mode): *m*/z calcd. for C₂₇H₃₇O₁₂ 553.2285; found 553.2278 [M+H]⁺.

3-O-(3,4-dimethoxycinnamoyl)-2,1'-di-O-isopropylidene sucrose, 3-diOMe 28: Compound 42 (300 mg, 0.297mmol) was treated with Mg(OMe)₂ (44.6 μ L, 0.149 mmol) in 8:2 MeOH/THF at room temperature for 12 hours. The reaction was quenched using 1N HCl (29.7 μ L, 0.297 mmol) and then evaporated to dryness. The residue was re-dissolved in pyridine (1.0 ml) and stirred with 1.56 M 3HF·NEt₃ (572 μ L, 0.892 mmol) and NEt₃ (83.0 μ L, 0.594 mmol) at room temperature for 12 hours. Upon completion, the reaction was evaporated to dryness, and the crude mixture was

purified using column chromatography with 2:1 EtOAc/Hexane as eluent. Compound **30** was obtained as white solid in 76% yield. mp 82.2-83.5°C; ¹H NMR (300 MHz, (CD₃)₂CO): isopropylidene rings: δ 1.18-1.42 (4 x s, 12H, 2 x (CH₃)₂C); methoxy and sucrose unit: δ 3.44 (d, 1H, *J* = 12 Hz, H-5), 3.66-3.88 (m, 13H, H-2, H-6, 2 x H-1', H-3', 2 x H-6', 6 x H-h"), 3.94-3.98 (m, 2H, H-6, H-4'), 4.09 (d, 1H, *J* = 12 Hz, H-5'), 4.39 (t, 1H, *J* = 6 Hz, H-4), 5.31 (t, 1H, *J* = 6 Hz, H-3), 6.15, 6.16 (d, 1H, *J* = 3 Hz, H-1'); *trans*-alkenyl and aromatic protons: δ 6.41 (d, 1H, *J* = 15 Hz, H-a"), 6.98 (d, 1H, *J* = 9 Hz, H-g"), 7.18 (d, 1H, *J* = 3 Hz, H-f"), 7.31 (s, 1H, H-c"), 7.60 (d, 1H, *J* = 15 Hz, H-b"); ¹³C NMR (75.5 MHz, (CD₃)₂CO): δ 23.6, 24.9, 28.8, 29.8, 33.4, 60.4, 60.5, 66.9, 67.3, 68.6, 71.3, 73.7, 75.7, 76.8, 77.0, 79.0, 84.5, 88.9, 96.3, 104.5, 106.3, 108.7, 115.3, 116.6, 120.9, 128.1, 132.6, 149.8, 154.9, 156.9, 170.9; HRMS (ESI-positive mode): *m*/z calcd. for C₂₉H₄₁O₁₄ 613.2496; found 613.2468 [M+H]⁺.

3-O-(3,4,5-trimethoxycinnnamoyl)-2,1'-di-O-isopropylidene

sucrose, 3-triOMe **29**: Compound **43** (300 mg, 0.289 mmol) was treated with Mg(OMe)₂ (43.3 μ L, 0.144 mmol) in 8:2 MeOH/THF at room temperature for 12 hours. Upon completion, the reaction was quenched with 1N HCl (28.9 μ L, 0.289 mmol) and evaporated

to dryness. The mixture was re-dissolved in pyridine (1.0 ml) and stirred with 1.56 M 3HF·NEt₃ (555 μ L, 0.866 mmol) and NEt₃ (80.6 μ L, 0.577 mmol) at room temperature for 12 hours. Upon completion, the reaction was evaporated to dryness, and the crude mixture was purified using column chromatography with 2:1 EtOAc/Hexane as eluent. Compound **31** was obtained as white solid in 79% yield. mp 99.0-100.2°C; ¹H NMR (300 MHz, CDCl₃): isopropylidene rings: δ 1.21-140 (4 x s, 12H, 2 x (CH₃)₂C); methoxy and sucrose unit: δ 3.42 (d, 1H, *J* = 12 Hz, H-5), 3.61-3.72 (m, 3H, H-1', 2 x H-6'), 3.80-3.89 (m, 12H, 2 x H-6, H-1', 9 x H-h''), 4.02-4.12 (m, 4H, H-4, H-3', H-4', H-5'), 5.31 (t, 1H, *J* = 10.5 Hz, H-3), 6.03 (d, 1H, *J* = 3 Hz, H-1); *trans*-alkenyl and aromatic protons: δ 6.29 (d, 1H, *J* = 15 Hz, H-a''), 6.71 (s, 2H, H-c'', H-g''), 7.55 (d, 1H, *J* = 15 Hz, H-b''); ¹³C NMR (75.5 MHz, MeOD): δ 24.5, 26.8, 29.3, 31.0, 61.7, 63.8, 69.4, 71.7, 74.6, 75.8, 77.5, 79.4, 84.2, 93.7, 105.8, 107.2, 118.9, 131.9, 146.5, 155.0, 169.1; HRMS (ESI-positive mode): *m*/z calcd. for C₃₀H₄₂O₁₅Na 665.2421; found 665.2444 [M+Na]⁺.

3-O-caffeoyl-2,1'-di-O-isopropylidene sucrose, 3-caff 30: Compound 44 (200 mg, 0.301 mmol) was treated with Mg(OMe)₂ (24.8 μ L, 0.0827 mmol) in 8:2 MeOH/THF at room temperature for 12 hours. Upon completion, the reaction was quenched with 1N HCl (165 μ L, 0.165 mmol) and the mixture evaporated to dryness. The crude mixture was re-dissolved in pyridine (1.0 mL) and stirred with 1.56 M 3HF·NEt₃ (318 μ L, 0.496 mmol) and NEt₃ (46.2 μ L, 0.331 mmol) at room

temperature for 12 hours. Upon completion, the reaction was evaporated to dryness, and the crude mixture was purified using column chromatography with 2:1 EtOAc/Hexane as eluent. Compound **32** was obtained as white solid in 62% yield. mp 106.0-107.4°C; ¹H NMR (300 MHz, $(CD_3)_2CO$): isopropylidene rings: δ 1.13-1.32 (4 x s, 12H, 2 x $(CH_3)_2C$); sucrose unit: δ 3.46-3.80 (m, 7H, H-5, 2 x H-6, 2 x H-1', 2 x H-6'), 3.82-3.87 (m, 2H, H-2, H-3'), 3.99 (d, 2H, J = 12 Hz, H-4', H-5'), 4.26 (t, 1H, J = 6 Hz, H-4), 5.19 (t, 1H, J = 9 Hz, H-3), 6.05 (d, 1H, J = 3 Hz, H-1); *trans*-alkenyl and aromatic peaks: δ 6.15 (d, 1H, J = 18 Hz, H-a"), 6.75 (d, 1H, J = 9 Hz, H-f"), 6.90 (d, 1H, J = 6 Hz, H-g"), 7.05 (s, 1H, H-c"), 7.42 (d, 1H, J = 15 Hz, H-b"); ¹³C NMR (75.5 MHz, $(CD_3)_2CO$) : δ 23.6, 24.6, 35.4, 46.4, 61.7, 62.2, 63.4, 70.5, 71.6, 71.8, 73.9, 70.3, 83.3, 91.4, 99.3, 101.1, 103.5, 114.3, 114.7, 115.5, 121.6, 126.6, 144.9, 145.6, 148.1 162.2, 165.9; HRMS (ESI-positive mode): m/z calcd. for C₂₇H₃₆O₁₄Na 607.2003; found 607.2007 [M+Na]⁺.

3-O-feruloyl-2, 1'-di-O-isopropylidene sucrose, 3-feru 31: Compound 45 (200 mg, 0.180 mmol) was treated with Mg(OMe)₂ (27.0 μ L, 0.0901 mmol) in 8:2 MeOH/THF at room temperature for 12 hours. Upon completion, the reaction was quenched with 1N HCl (180 μ L, 0.180 mmol) and evaporated to dryness. The crude mixture was re-dissolved in pyridine (1.0 mL) and stirred with 1.56

M 3HF·NEt₃ (347 µL, 0.541 mmol) and NEt₃ (50.3 µL, 0.361 mmol) at room temperature for 12 hours. Upon completion, the reaction was evaporated to dryness, and the crude mixture was purified using column chromatography with 2:1 EtOAc/Hexane as eluent. Compound **31** was obtained as white solid in 80% yield. mp 80.1-82.3°C; ¹H NMR (300 MHz, CDCl₃): isopropylidene rings: δ 1.23-1.32 (4 x s, 12H, 2 x (CH₃)₂C); methoxy and sucrose unit: δ 3.43 (d, 1H, *J* = 9 Hz, H-5), 3.58-3.67 (m, 2H, 2 x H-6'), 3.70-3.90 (m, 10H, H-2, H-3', H-4, 2 x H-6, 2 x H-1', 3 x H-h''), 4.14 (d, 1H, H-5'), 4.48-4.51 (m, 1H, H-4), 5.31(t, 1H, J = 9 Hz, H-3); anomeric, *trans*-alkenyl and aromatic protons: δ 6.17-6.23 (m, 2H, H-1, H-a''), 6.87 (d, 1H, *J* = 9 Hz, H-c''), 6.97-7.02 (m, 2H, H-d'', H-g''), 7.54 (d, 1H, *J* = 15 Hz, H-b''); ¹³C NMR (75.5 MHz, CDCl₃): δ 19.0, 24.1, 25.2, 28.9, 46.4, 56.0, 61.9, 63.9, 70.7, 71.5, 71.6, 73.2, 79.2, 83.0, 91.2, 99.9, 101.7, 103.5, 109.6, 114.9, 115.1, 123.1, 126.8, 145.2, 146.9, 148.2, 166.5; HRMS (ESI-positive mode): *m*/z calcd. for C₂₈H₃₈O₁₄Na 621.2159; found 621.2175 [M+Na]⁺.

3-O-coumaroyl-2,1'-di-O-isopropylidene sucrose, 3-coum 32: Compound 46 (200 mg, 0.301 mmol) was treated with Mg(OMe)₂ (24.8 μ L, 0.0827 mmol) in 8:2 MeOH/THF at room temperature for 12 hours. Upon completion, the reaction was quenched with 1N HCl (165 μ L, 0.165 mmol) and evaporated to dryness. The crude mixture was re-dissolved in pyridine (1.0 mL) and stirred with 1.56 M 3HF·NEt₃ (318 μ L, 0.496 mmol) and NEt₃ (46.2 μ L, 0.331 mmol) at room temperature for 12 hours. Upon completion, the

reaction was evaporated to dryness, and the crude mixture was purified using column chromatography with 2:1 EtOAc/Hexane as eluent. Compound **32** was obtained as white solid in 81% yield. mp 79.5-80.9°C; ¹H NMR (300 MHz, (CD₃)₂CO): isopropylidene rings: δ 1.24-143 (4 x s, 12H, 2 x (CH₃)₂C); sucrose unit: δ 3.44 (d, 1H, *J* = 12 Hz, H-5), 3.59-3.83 (m, 6H, H-2, 2 x H-1', H-3', 2 x H-6'), 3.94-3.98 (m, 2H, H-4', 2 x H-6), 4.09 (d, 1H, J = 12 Hz, H-5'), 4.38 (t, 1H, *J* = 7.5 Hz, H-4), 5.30 (t, 1H, *J* = 9 Hz, H-3), 6.15 (d, 1H, *J* = 6 Hz, H-1); *trans*-alkenyl and aromatic protons: δ 6.33 (d, 1H, *J* = 15 Hz, H-a"), 6.88 (d, 2H, *J* = 9 Hz, H-d", H-f"), 7.53 (d, 2H, *J* = 6 Hz, H-c", H-g"), 7.59 (d, 1H, *J* = 18 Hz, H-b"); ¹³C NMR (75.5 MHz, (CD₃)₂CO): δ 18.4, 23.6, 24.6, 25.4, 25.4, 61.7, 62.1, 63.4, 66.1, 70.5, 71.6, 71.8, 73.8, 79.3, 83.4, 91.1, 99.3, 101.1, 103.5, 114.8, 115.8, 116.2, 126.1, 130.1, 144.5, 159.8, 165.8; HRMS (ESI-positive mode): *m*/z calcd. for C₂₇H₃₇O₁₃ 569.2234; found 569.2232 [M+H]⁺.

3-O-sinapoyl-2,1'-di-O-isopropylidene sucrose, 3-sinap 33: Compound 47 (200 mg, 0.269 mmol) was dissolved in pyridine (1.0 ml) and stirred at room temperature. 1.56 M 3HF·NEt₃ (518 μ L, 0.808 mmol) and NEt₃ (75.2 μ L, 0.539 mmol) were added to the solution and the reaction was left to stir for 12 hours. Upon completion, the mixture was evaporated to dryness, and the residue was purified using column chromatography using 2:1 EtOAc/Hexane as eluent. Compound 33 was obtained as white

solid in 80% yield. mp 85.2-86.4°C; ¹H NMR (300 MHz, CDCl₃): isopropylidene rings: δ 1.23-1.38 (4 x s, 12H, 2 x (CH₃)₂C); methoxy and sucrose unit: δ 3.43 (d, 1H, *J* = 12 Hz, H-5), 3.52-3.70 (m, 2H, 2 x H-6'), 3.74-4.03 (m, 13H, H-2, 2 x H-6, 2 x H-1', H-3', H-4', 6 x H-h"), 4.16 (d, 1H, *J* = 15 Hz, H-5'), 4.51 (t, 1H, *J* = 7.5 Hz, H-4), 5.34 (t, 1H, *J* = 9 Hz, H-3), 6.18 (d, 1H, *J* = 3 Hz, H-1); *trans*-alkenyl and aromatic protons: δ 6.29 (d, 1H, *J* = 15 Hz, H-a"), 6.70 (s, 2H, H-c", H-g"), 7.53 (d, 1H, *J* = 15 Hz, H-b"); ¹³C NMR (75.5 MHz, CDCl₃): δ 18.3, 23.4, 24.4, 28.2, 55.5, 61.2, 61.5, 63.3, 65.6, 68.1, 68.1, 72.3, 72.8, 81.4, 90.6, 99.1, 101.6, 101.7, 102.5, 102.5, 104.4, 104.4, 113.7, 136.6, 136.6, 145.7, 146.4, 146.4, 166.3; HRMS (ESI-positive mode): *m*/z calcd. for C₂₉H₄₀O₁₅Na 651.2265; found 651.2281 [M+Na]⁺.

General procedure for the acylation of compound 18: Synthesis of compounds 41-47

To a stirred solution of Compound **18** (500 mg, 0.610 mmol) and DMAP (7.5 mg, 0.0610 mmol) in CH_2Cl_2 (10 ml) was added the respective (substituted) cinnamic acid (0.610 mmol) and DCC (252 mg, 1.22 mmol) at room temperature. After 24 hours (TLC), CH_2Cl_2 was removed under vacuum and the residue was triturated with cold diethyl ether (20 ml) and filtered. Diethyl ether was then removed under vacuum, and the crude product was purified using column chromatography using 8:1 Hexane/EtOAc as eluent.

3-O-cinnamoyl-4'-O-para-nitrobenzoyl-3'-O-carboxybenzyl-6'-O-tert-butyldimethylsiloxy-2,1'-di-O-

isopropylidene sucrose **41**: Following general procedure 1, reaction with cinnamic acid **34** (181 mg, 1.22 mmol) gave **41** in as white solid in 76% yield. mp 90.3-90.9°C; ¹H NMR (300 MHz, CDCl₃): TBS group: δ 0.01 (s, 6H, (CH₃)₂Si), 0.79 (s, 9H, (CH₃)₃CSi); isopropylidene rings: δ 1.23-147 (4 x s, 12H, 2 x (CH₃)₂C); Cbz and sucrose unit: δ 3.50 (d, 1H, *J* = 12 Hz, H-5), 3.69-3.95 (m, 7H, H-2, H-4, 2 x H-6, 2 x H-1', H-6'), 4.21-4.26 (m, 2H, H-5', H-6'), 4.99 (d, 1H, *J* = 3 Hz, H-3'), 5.25-5.41 (m, 3H, H-3, 2 x H-a), 5.71 (t, 1H, *J* = 3 Hz, H-4'), 6.07 (d, 1H, *J*

= 3 Hz, H-1'); Cbz and cinnamoyl protons: δ 6.44 (d, 1H, J = 15 Hz, H-a"), 7.29-7.37 (m, 6H, H-b, H-c, H-d, H-e, H-f, H-e"), 7.45 (d, 2H, J = 9 Hz, H-d", H-f"), 7.50-7.53 (m, 2H, H-c", H-g"), 7.68 (d, 1H, J = 15 Hz, H-b"); PNB group: δ 8.20, 8.22 (2 x d, 4H, J = 27, 9 Hz, H-a', H-b', H-c', H-d'); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.43, -5.39, 18.2, 19.0, 23.8, 25.5, 25.8, 29.0, 63.5, 66.5, 70.8, 71.7, 71.9, 79.2, 81.1, 82.3, 91.8, 99.7, 101.4, 104.7, 118.1, 123.6, 128.0, 128.1, 128.5, 128.6, 128.9, 130.9, 134.5, 135.0, 144.8, 154.5, 163.4, 165.9; HRMS (ESI-positive mode): m/z calcd. for C₄₈H₅₉NO₁₇NaSi 972.3450; found 972.3431 [M+Na]⁺.

3-O-(3,4-dimethoxycinnamoyl)-4'-O-para-nitrobenzoyl-3'-O-carboxybenzyl-6'-O-tert-

butyldimethylsiloxy-2,1'-di-O-isopropylidene sucrose 42: Following the general procedure 1, diOMe-cinnamic acid 35 (254 mg, 1.22 mmol) gave compound 42 as white solid in 80% yield. mp 86.7-87.7°C; ¹H NMR (300 MHz, CDCl₃): TBS group: δ 0.01 (s, 6H, (CH₃)₂Si), 0.84 (s, 9H, (CH₃)₃CSi); isopropylidene rings: δ 1.20-1.46 (4 x s, 12H, 2 x (CH₃)₂C); Cbz, methoxy and sucrose unit: δ 3.47 (t, 1H, J = 7.5 Hz, H-5), 3.70-3.77 (m, 3H, H-2, 2 x H-1'), 3.82-3.89 (m, 11H, 6 x H-h", H-4, 2 x H-6, 2 x H-6') 4.05-4.25 (m, 1H, H-5'), 5.10 (d, 1H, J = 3 Hz, H-3'), 5.29-5.38 (m, 3H, H-3, 2 x H-a), 5.70 (t, 1H, J = 6 Hz,

H-4'), 6.04 (d, 1H, J = 3 Hz, H-1'); Cbz and dimethoxycinnamoyl peaks: δ 6.30 (d, 1H, J = 15 Hz, H-a''), 6.84 (d, 1H, J = 6 Hz, H-g''), 7.04-7.07 (m, 2H, H-c'', H-f''), 7.20-7.25 (m, 3H, H-c, H-d, H-e), 7.30-7.34 (m, 2H, H-b, H-f), 7.44 (d, 1H, J = 6 Hz, H-b''); PNB peaks: δ 8.20-8.23 (2 x d, 4H, J = 27, 9 Hz, H-a', H-b', H-c', H-d'); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.43, -5.38, 18.2, 19.0, 23.5, 25.0, 25.6, 25.8, 25.8, 28.0, 56.1, 61.0, 62.2, 64.2, 66.5, 70.7, 70.8, 71.7, 71.9, 76.6, 78.2, 81.2, 82.9, 91.7, 99.7, 101.3, 101.4, 104.7, 105.3, 117.3, 121.6, 126.5, 128.5, 128.6, 128.7, 130.0, 130.8, 134.9, 135.0, 140.2, 144.9, 150.8, 153.4, 153.9, 154.5, 165.4, 165.6; HRMS (ESI-positive mode): *m*/z calcd. for C₅₀H₆₃NO₁₉NaSi 1032.3661; found 1032.3684 [M+Na]⁺.

3-O-(3,4,5-trimethoxycinnamoyl)-4'-O-para-nitrobenzoyl-3'-O-carboxybenzyl-6'-O-tert-

butyldimethylsiloxy-2, *1'-di-O-isopropylidene* sucrose *43*: Following the general procedure 1, triOMe-cinnamic acid **36** (291 mg, 1.22 mmol) gave compound **43** as white solid in 81% yield. mp 109.7-110.7°C; ¹H NMR (300 MHz, CDCl₃): TBS group: δ 0.00 (s, 6H, (CH₃)₂Si), 0.80 (s, 9H, (CH₃)₃CSi); isopropylidene rings: δ 1.21-1.25 (4 x s, 12H, 2 x (CH₃)₂C); Cbz, methoxy and sucrose unit: δ 3.48 (d, 1H, J = 15 Hz, H-5), 3.73-3.78 (m, 4H, H-2, 2 x H-1', H-6'), 3.82-3.90 (m, 12H, 9 x H-h", H-4, 2 x H-6), 4.28 (m, 2H, H-5', H-6'), 4.99 (d, 1H, J = 6 Hz, H-3'), 5.27-5.40 (m, 3H, H-3, 2 x H-a), 5.70 (t, 1H, J = 7.5

Hz, H-4'), 6.04 (d, 1H, *J* = 6 Hz, H-1'); Cbz and trimethoxycinnamoyl peaks: δ 6.34 (d, 1H, *J* = 15 Hz, H-a"), 6.74 (s, 2H, H-c", H-g"), 7.31-7.34 (m, 3H, H-c, H-d, H-e), 7.43-7.46 (m, 2H, H-b, H-f), 7.55 (d, 1H, H-b"); PNB group: δ 8.20-8.22 (2 x d, 4H, *J* = 27, 9 Hz, H-a', H-b', H-c', H-d'); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.43, -5.38, 14.2, 18.2, 19.0, 23.8, 25.5, 25.8, 29.0, 56.2, 61.0, 62.4, 63.5, 64.2, 66.5, 70.7, 70.8, 71.7, 71.9, 79.2, 81.1, 82.3, 91.8, 99.7, 101.4, 104.7, 105.3, 117.3, 123.6, 128.5, 128.6,

128.6, 130.0, 130.9, 134.7, 135.0, 140.1, 144.8, 150.8, 153.5, 164.5, 163.4, 165.8; HRMS (ESI-positive mode): *m*/z calcd. for C₅₁H₆₅NO₂₀NaSi 1062.3767; found 1062.3792 [M+Na]⁺.

3-O-(3,4-di-tert-butyldimethylsiloxycinnmoyl)-4'-O-para-nitrobenzoyl-3'-O-carboxybenzyl-6'-O-tertbutyldimethylsiloxy-2,1'-di-O-isopropylidene

sucrose **44**: Following the general procedure 1, OTBS-caff acid **37** (498 mg, 1.22 mmol) gave compound **44** as yellowish solid in 80% yield. mp 100.6-101.3°C; ¹H NMR (300 MHz, CDCl₃): TBS group: δ -0.18 (s, 6H, (CH₃)₂Si), 0.61 (s, 9H, (CH₃)₃CSi); TBS on OTBS-caffeoyl group: δ 0.01 (s, 12H, 2 x (CH₃)₂Si), 0.78 (s, 18H, 2 x (CH₃)₃CSi); isopropylidene rings: δ 1.05-1.27 (4 x s, 12H, 2 x (CH₃)₂C); Cbz and sucrose unit: δ 3.31 (d, 1H, *J* = 12 Hz, H-5), 3.47-3.59 (m, 2H,

H-2, H-1'), 3.63-3.77 (m, H-4, 2 x H-6, H-1', H-6'), 4.02-4.06 (m, 2H, H-5', H-6'), 4.81 (d, 1H, J = 3 Hz, H-3'), 5.06-5.20 (m, 3H, H-3, 2 x H-a), 5.53 (t, 1H, J = 6 Hz, H-4'), 5.88 (d, 1H, J = 3 Hz, H-1); Cbz and OTBS caffeoyl peaks: δ 6.04 (d, 1H, J = 15 Hz, H-a'), 6.61 (d, 1H, J = 6 Hz, H-c''), 6.82 (m, 2H, H-f'', H-g''), 7.09-7.17 (m, 3H, H-c, H-d, H-e), 7.24-7.28 (m, 2H, H-b, H-f), 7.37 (d, 1H, J = 15 Hz, H-b''); PNB peaks: δ 8.02-8.10 (2 x d, 4H, J = 27, 10.5, H-a', H-b', H-c', H-d'); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.43, -5.39, -4.10, -4.05, 18.2, 18.5, 18.5, 19.0, 25.5, 25.8, 25.9, 25.9, 29.0, 48.2, 51.7, 63.5, 65.8, 66.7, 70.7, 71.7, 72.0, 81.1, 92.0, 99.7, 101.4, 104.7, 120.7, 123.6, 128.4, 128.6, 130.9, 135.0, 147.3, 154.5, 163.3; HRMS (ESI-positive mode): *m*/z calcd. for C₆₀H₈₇NO₁₉NaSi₃ 1232.5078; found 1232.5082 [M+Na]⁺.

3-O-(4-tert-butyldimethylsilyloxy-3-methoxycinnamoyl)-4'-O-para-nitrobenzoyl-3'-O-carboxybenzyl-6'-O-tert-butyldimethylsiloxy-2,1'-di-O-isopropylidene sucrose **45**: Following the general procedure 1,

OTBS-feru acid **38** (376 mg, 1.22 mmol) gave compound **45** as white solid in 89% yield. mp 85.0-86.2°C; ¹H NMR (300 MHz, CDCl₃): TBS group: δ -0.13 (s, 6H, (CH₃)₂Si), 0.66 (s, 9H, (CH₃)₃CSi); TBS on OTBS-feruloyl group: δ 0.00 (s, 6H, (CH₃)₂Si), 0.83 (s, 9H, (CH₃)₃CSi); isopropylidene rings: δ 1.10-1.40 (4 x s, 12H, 2 x (CH₃)₂C); Cbz, methoxy and sucrose unit: δ 3.57 (d, 1H, *J* = 12 Hz, H-5), 3.67-3.72 (m, 3H, 2 x H-1', H-6'), 3.75 (s, 3H, 3 x H-h''), 3.76-3.81 (m, H-2, 4H, 2 x H-6, H-6'), 4.10-4.11 (m, 2H, H-4, H-5'), 4.86 (d, 1H, *J* = 3 Hz, H-3'), 5.15-5.24 (m, 3H, H-3, 2 x H-a), 5.58 (t, 1H, *J* = 3 Hz, H-4'),

5.93 (d, 1H, J = 3 Hz, H-1); Cbz and OTBS-feruloyl peaks: δ 6.158 (d, 1H, J=15.9, H-a"), 6.68 (d, 1H,

J = 6 Hz, H-d"), 6.87-6.88 (m, 2H, H-c", H-g"), 7.16-7.19 (m, 3 H, H-c, H-d, H-e), 7.29-7.31 (m, 2H, H-b, H-f), 7.47 (d, 1H, J = 15 Hz, H-b"); PNB group: δ 8.06-8.11 (2 x d, 4H, J = 27, 9 Hz, H-a', H-b', H-c', H-d'); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.5, -5.4, -4.6, 18.2, 18.5, 19.0, 23.8, 25.5, 25.7, 25.8, 29.0, 55.5, 62.4, 63.5, 64.2, 66.5, 70.6, 70.7, 71.7, 71.9, 79.2, 81.1, 82.3, 91.8, 99.7, 101.4, 104.7, 110.8, 115.8, 121.1, 122.3, 123.6, 128.4, 128.5, 128.6, 128.6, 128.6, 130.9, 134.8, 135.0, 144.9, 147.5, 150.7, 151.2, 154.5, 163.4, 166.1; HRMS (ESI-positive mode): m/z calcd. for C₅₅H₇₅NO₁₉NaSi₂ 1132.4370; found 1132.4365 [M+Na]⁺.

3-O-(4-tert-butyldimethylsilyloxy)-4'-O-para-nitrobenzoyl-3'-O-carboxybenzyl-6'-O-tert-

butyldimethylsiloxy-2,1'-di-O-isopropylidene sucrose **46**: Following the general procedure 1, OTBS-coum acid **39** (339 mg, 1.22 mmol) gave compound **46** as white solid in 80% yield. mp 84.6-85.6°C; ¹H NMR (300 MHz, CDCl₃): TBS group: δ 0.02 (s, 6H, (CH₃)₂Si), 0.80 (s, 9H, (CH₃)₃CSi); TBS on OTBScoumaroyl group: δ 0.20 (s, 6H, (CH₃)₂Si), 0.96 (s, 9H, (CH₃)₃CSi); isopropylidene rings: δ 1.24-1.46 (4 x s, 12H, 2 x (CH₃)₂C); Cbz and sucrose unit: δ 3.72 (d, 1H, J = 10.5 Hz, H-5), 3.83-3.86 (m, 2H, 2 x H-1'), 3.90-4.01 (m, 5H, H-2, 2 x H-6, 2 x H-6'); 4.25-4.26 (m, 2H, H-4, H-5'), 5.00 (d, 1H, J = 3 Hz, H-3'), 5.30-5.40 (m, 3H, H-3, 2 x H-a), 5.72 (t, 1H, J = 3 Hz, H-

4'), 6.07 (d, 1H, J = 3.6, H-1); Cbz and OTBS-coumaroyl peaks: δ 6.31 (d, 1H, J = 15.9, H-a"), 6.83 (d, 2H, J = 8.4 Hz, H-d", H-f"), 7.31-7.33 (m, 3H, H-c, H-d, H-e), 7.40-7.46 (m, 4H, H-b, H-f, H-c", H-g"), 7.64 (d, 1H, J = 15.9, H-b"); PNB group: δ 8.05-8.21 (2 x d, 4H, J = 27, 9 Hz, H-a', H-b', H-c', H-d'); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.5, -5.4, -4.4, 18.2, 18.3, 19.0, 25.5, 2.6, 25.8, 29.0, 64.2, 70.7, 99.7, 101.4, 104.7, 120.5, 123.6, 127.8, 128.5, 128.6, 128.6, 129.7, 130.9, 134.8, 135.0, 150.7, 157.8; HRMS (ESI-positive mode): m/z calcd. for C₅₄H₇₃NO₁₈NaSi₂ 1102.4232; found 1102.4264 [M+Na]⁺.

3-O-(4-tert-butyldimethylsilyloxy-3,5-dimethoxycinnamoyl)-4'-O-para-nitrobenzoyl-3'-O-

carboxybenzyl-6'-O-tert-butyldimethylsiloxy-2,1'-di-O-

isopropylidene sucrose **47**: Following the general procedure, OTBS-sinap acid **40** (413 mg, 1.22 mmol) gave compound **47** as white solid in 80% yield. mp 105.5-106.2°C; ¹H NMR (300 MHz, CDCl₃): TBS group: δ -0.10 (s, 6H, J = 2.1 Hz, (CH₃)₂Si), 0.69 (s, 9H, (CH₃)₃CSi); TBS on OTBS-sinapoyl group: δ 0.00 (s, 6H, (CH₃)₂Si), 0.87 (s, 9H, (CH₃)₃CSi); isopropylidene rings: δ 1.14-1.35 (4 x s, 12H, 2 x (CH₃)₂C); Cbz, methoxy and sucrose unit: δ 3.40 (d, 1H, J = 9 Hz, H-5), 3.59-3.69 (m, 4H, H-6, H-6', 2 x H-1') 3.70-3.71 (m, 6H, 6 x H-h''), 3.73-3.79 (m, 3H, H-2, H-

6, H-6'), 4.14-4.15 (m, 2H, H-4, H-5'), 4.89 (d, 1H, J = 3 Hz, H-3'), 5.24-5.27 (m, 3H, H-3, 2 x H-a), 5.61 (t, 1H, J = 3 Hz, H-4'), 5.96 (d, 1H, J = 3.6 Hz, H-1); Cbz and OTBS-sinapoyl peaks: δ 6.19 (d, 1H, J = 15.9 Hz, H-a"), 6.55-6.61 (m, 2H, H-c", H-g"), 7.13-7.22 (m, 3H, H-c, H-d, H-e), 7.32-7.35 (m, 2H, H-b, H-f), 7.48 (d, 1H, J = 15 Hz, H-b"); PNB group: δ 8.06-8.22 (2 x d, 4H, J = 27, 9 Hz, Ha', H-b', H-c', H-d'); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.5, -5.4, -4.6, -4.5, -3.6, 18.0, 18.2, 18.8, 19.0, 23.9, 24.7, 25.4, 25.5, 25.7, 25.7, 25.9, 26.3, 29.0, 31.0, 32.8, 55.7, 55.8, 55.9, 62.4, 63.5, 64.1, 70.6, 70.7, 721.7, 71.9, 79.2, 81.1, 82.3, 91.8, 99.7, 101.4, 104.7, 105.2, 105.4, 115.9, 117.4, 123.6, 127.1, 127.4, 128.5, 128.6, 128.6, 130.9, 134.7, 135.0, 136.9, 143.9, 145.3, 150.7, 151.8, 154.5, 163.4, 166.1; HRMS (ESI-positive mode): *m*/z calcd. for C₅₆H₇₇NO₂₀NaSi₂ 1162.4475; found 1162.4419 [M+Na]⁺

4'-O-cinnamoyl-2,1'-di-O-isopropylidene sucrose, 4'-cinn 48: Compound 55 (200 mg, 0.250 mmol) and $Pd(OAc)_2$ (4.7 mg, 0.0208 mmol) were dissolved in CH_2Cl_2 (5.0 ml) and stirred at room temperature. Subsequently, Et_3SiH (53.2 µL, 0.333 mmol) and NEt_3 (4.65 µL, 0.0333 mmol) were added to the solution and the reaction was left to stir for 12 hours. Upon completion, the reaction was diluted with EtOAc (30.0 ml). The reaction mixture was washed twice with H_2O and the organic layer was collected and dried over anhydrous MgSO₄. After removal of EtOAc, the

crude product obtained was re-dissolved in pyridine (1.0 ml) and stirred at room temperature. Subsequently, 1.56 M 3HF·NEt₃ (481 µL, 0.750 mmol) and NEt₃ (69.8 µL, 0.500 mmol) were added to the solution and the reaction was left to stir for 12 hours. Upon completion, pyridine was removed. The crude product was then subjected to purification using 3:2 EtOAc/Hexane as eluent. Compound **48** was obtained as white solid in 88% yield. mp 88.1-89.2°C; ¹H NMR (300 MHz, CDCl₃): isopropylidene rings: δ 1.38-1.45 (4 x s, 12H, 2 x (CH₃)₂C); sucrose unit: δ 3.44-3.48 (m, 2H, H-5, H-1'), 3.52-3.67 (m, 2H, H-2, H-1'), 3.72-3.90 (m, 6H, H-3, H-4, 2 x H-6, 2 x H-6'), 3.93-4.02 (m, 1H, H-5'), 4.19 (d, 1H, *J* = 3 Hz, H-3'), 5.43 (t, 1H, *J* = 7.5 Hz, H-4'), 6.19 (d, 1H, *J* = 3 Hz, H-1); *trans*-alkenyl and aromatic protons: δ 6.65 (d, 1H, *J* = 30 Hz, H-a'), 7.15-7.21 (m, 3H, H-d', H-e', H-f'), 7.23-7.26 (m, 3H, H-b', H-c', H-g'); ¹³C NMR (75.5 MHz, CDCl₃): δ 17.1, 22.2, 23.2, 27.0, 28.8, 33.7, 5,9,9, 62.1, 64.2, 67.3, 70.9, 71.4, 80.0, 89.4, 98.0, 100.3, 101.3, 124.4, 126.3, 126.5, 138.0, 170.9; HRMS (ESI-positive mode): *m*/z calcd. for C₂₇H₃₆O₁₂Na 575.2104; found 575.2088 [M+Na]⁺.

4'-O-(3,4-dimethoxycinnamoyl)-2,1'-di-O-isopropylidene sucrose, 4'-diOMe 49: Compound 56 (200 mg, 0.232 mmol) and Pd(OAc)₂ (4.3 mg, 0.0193 mmol) were dissolved in CH_2Cl_2 (5.0 ml) and stirred at room temperature. Subsequently, Et_3SiH (49.5 µL, 0.310 mmol) and NEt₃ (4.35 µL, 0.0193 mmol) were added to the solution and the reaction was left to stir for 12 hours. Upon completion, the reaction was diluted with EtOAc (30.0 ml). The

reaction mixture was washed twice with H₂O and the organic layer was collected and dried over anhydrous MgSO₄. After removal of EtOAc, the crude product obtained was re-dissolved in pyridine (1.0 ml) and stirred at room temperature. Subsequently, 1.56 M 3HF·NEt₃ (447 µL, 0.697 mmol) and NEt₃ (64.9 µL, 0.465 mmol) were added to the solution and the reaction was left to stir for 12 hours. Upon completion, pyridine was removed. The crude product was then subjected to purification using 3:2 EtOAc/Hexane as eluent. Compound **49** was obtained as white solid in 85% yield. mp 82.1-83.6°C; ¹H NMR (300 MHz, CDCl₃): isopropylidene rings: δ 1.41-1.46 (4 x s, 12H, 2 x (CH₃)₃C); sucrose unit: δ 3.47 (d, 1H, *J* = 15 Hz, H-5), 3.53-3.66 (m, 3H, H-2, 2 x H-1'), 3.72-3.79 (m, 1H, H-6'), 3.81-3.91 (m, 9H, H-4, 2 x H-6, 6 x H-h'), 3.96-4.06 (m, 3H, H-3, H-5', H-6'), 4.22 (d, 1H, *J* = 12 Hz, H-3'), 5.52 (t, 1H, *J* = 7.5 Hz, H-4'), 6.20 (d, 1H, *J* = 3 Hz, H-1); *trans*-alkenyl and aromatic protons: δ 6.25 (d, 1H, *J* = 18 Hz, H-a'), 6.79 (d, 1H, *J* = 9 Hz, H-g'), 6.95 (s, 1H, H-f'), 6.99-7.02 (m, 1H, H-c'), 7.58 (d, 1H, *J* = 15 Hz, H-b'); ¹³C NMR (75.5 MHz, CDCl₃): δ 12.0, 17.4, 18.7, 19.1, 24.2, 25.3, 29.0, 41.9, 53.6, 55.9, 56.0, 64.2, 82.4, 91.4, 100.0, 102.2, 103.6, 114.5, 123.0, 127.0, 149.3, 151.5, 167.2; HRMS (ESI-positive mode): *m*/z calcd. for C₂₉H₄₀O₁₄Na 635.2316; found 635.2296 [M+Na]⁺.

4'-O-(3,4,5-trimethoxycinnamoyl)-2,1'-di-O-isopropylidene sucrose, 4'-triOMe 50: Compound 57

(200 mg, 0.225 mmol) and Pd(OAc)₂ (4.2 mg, 0.0187 mmol) were dissolved in CH₂Cl₂ (5.0 ml) and stirred at room temperature. Subsequently, Et₃SiH (47.8 μ L, 0.229 mmol) and NEt₃ (4.18 μ L, 0.0229 mmol) were added to the solution and the reaction was left to stir for 12 hours. Upon completion, the reaction was diluted with EtOAc (30.0 ml). The reaction mixture was washed twice with H₂O and the organic layer was collected and dried over anhydrous MgSO₄. After removal of EtOAc, the crude product obtained was re-dissolved in pyridine (1.0 ml) and stirred at room temperature. Subsequently, 1.56 M 3HF·NEt₃ (432 μ L, 0.674

mmol) and NEt₃ (62.7 μL, 0.449 mmol) were added to the solution and the reaction was left to stir for 12 hours. Upon completion, pyridine was removed. The crude product was then subjected to purification using 3:2 EtOAc/Hexane as eluent. Compound **50** was obtained as white solid in 85% yield. mp 87.1-88.3°C; ¹H NMR (300 MHz, CDCl₃): isopropylidene rings: δ 1.38-1.44 (4 x s, 12H, 2 x (CH₃)₃C); methoxy and sucrose: δ 3.44 (d, 1H, J = 12 Hz, H-5), 3.49-3.70 (m, 4H, H-2, 2 x H-1', H-6'), 3.71-3.83 (m, 12H, H-4, 2 x H-6, 9 x H-h'), 3.92-4.08 (m, 3H, H-3, H-5', H-6'), 4.27 (d, 1H, J = 12 Hz, H-3'), 5.53 (t, 1H, J = 7.5 Hz, H-4'), 6.20 (d, 1H, J = 3 Hz, H-1); *trans*-alkenyl and aromatic protons: δ 6.25 (d, 1H, J = 18 Hz, H-a'), 6.59 (s, 2H, H-c', H-g'), 7.47 (d, 1H, J = 15 Hz, H-b'); ¹³C NMR (75.5 MHz, CDCl₃): δ 19.2, 24.2, 25.2, 25.6, 25.9, 29.0, 56.1, 56.2, 61.0, 62.0, 62.3, 64.2, 66.4, 69.0, 73.2, 73.6, 82.2, 91.5, 99.9, 100.0, 102.4, 102.5, 103.4, 105.4, 116.2, 128.2, 129.6, 140.3, 146.3, 153.2, 153.4, 167.0.

4'-O-caffeoyl-2,1'-di-O-isopropylidene sucrose, 4'-caff 51: Compound 58 (200 mg, 0.189 mmol) and Pd(OAc)₂ (3.5 mg, 0.0157 mmol) were dissolved in CH₂Cl₂ (5.0 ml) and stirred at room temperature. Subsequently, Et₃SiH (40.2 μ L, 0.251 mmol) and NEt₃ (3.51 μ L, 0.0251 mmol) were added to the solution and the reaction was left to stir for 12 hours. Upon completion, the reaction was diluted with EtOAc (30.0 ml). The reaction mixture was washed twice with H₂O and the organic layer was collected and dried over anhydrous MgSO₄. After removal of EtOAc, the

crude product obtained was re-dissolved in pyridine (1.0 ml) and stirred at room temperature. Subsequently, 1.56 M 3HF·NEt₃ (363 µL, 0.566 mmol) and NEt₃ (52.6 µL, 0.377 mmol) were added to the solution and the reaction was left to stir for 12 hours. Upon completion, pyridine was removed. The crude product was then subjected to purification using 3:2 EtOAc/Hexane as eluent. Compound **51** was obtained as white solid in 84% yield. mp 69.5-70.6°C; ¹H NMR (300 MHz, (CD₃)₂CO): isopropylidene rings: δ 1.16-1.32 (4 x s, 12H, 2 x (CH₃)₃C); sucrose: δ 3.35-3.49 (m, 3H, H-5, 2 x H-1'), 3.51-3.69 (m, 4H, H-2, 2 x H-6, H-6'), 3.72-3.77 (m, 2H, H-4, H-6'), 3.82-3.89 (m, 2H, H-3, H-5'), 4.00 (d, 1H, *J* = 15 Hz, H-3'), 5.38 (t, 1H, *J* = 7.5 Hz, H-4'), 5.99 (d, 1H, *J* = 15 Hz, H-1); *trans*-alkenyl and aromatic protons: δ 6.16 (d, 1H, *J* = 15 Hz, H-a'), 6.72 (d, 1H, *J* = 9 Hz, H-f'), 6.90 (d, 1H, *J* = 9 Hz, H-g'), 7.03 (d, 1H, *J* = 3 Hz, H-c'), 7.44 (d, 1H, *J* = 18 Hz, H-b'); ¹³C NMR (75.5 MHz, (CD₃)₂CO): δ 19.4, 24.5, 25.5, 62.7, 63.8, 64.3, 65.4, 66.8, 70.1, 71.5, 73.7, 74.3, 75.0, 77.7, 78.6, 82.8, 92.2, 93.9, 99.9, 100.0, 102.0, 102.2, 104.3, 104.4, 105.9, 114.9, 115.2, 116.1, 116.4, 120.4, 122.8, 127.4, 146.4, 146.7, 129.1, 167.2, 167.4; HRMS (ESI-positive mode): *m*/z calcd. for C₂₇H₃₇O₁₄ 585.2183; found 585.2163 [M+H]⁺.

4'-O-feruloyl-2,1'-di-O-isopropylidene sucrose, 4'-feru 52: Compound 59 (200 mg, 0.208 mmol) and Pd(OAc)₂ (3.9 mg, 0.0174 mmol) were dissolved in CH₂Cl₂ (5.0 ml) and stirred at room temperature. Subsequently, Et₃SiH (44.3 μ L, 0.278 mmol) and NEt₃ (3.88 μ L, 0.0278 mmol) were added to the solution and the reaction was left to stir for 12 hours. Upon completion, the reaction was diluted with EtOAc (30.0 ml). The reaction mixture was washed twice with H₂O and the organic layer was collected and dried over anhydrous MgSO₄. After removal of EtOAc, the

crude product obtained was re-dissolved in pyridine (1.0 ml) and stirred at room temperature. Subsequently, 1.56 M 3HF·NEt₃ (400 μ L, 0.625 mmol) and NEt₃ (58.1 μ L, 0.416 mmol) were added to the solution and the reaction was left to stir for 12 hours. Upon completion, pyridine was removed. The crude product was then subjected to purification using 3:2 EtOAc/Hexane as eluent. Compound **52** was obtained as white solid in 82% yield. mp 77.8-79.0°C; ¹H NMR (300 MHz, (CD₃)₂CO): isopropylidene rings: δ 1.31-1.46 (4 x s, 12H, 2 x (CH₃)₃C); methoxy and sucrose unit: δ 3.49-3.58 (m, 2H, H-5, H-1'), 3.62-3.77 (m, 5H, H-2, 2 x H-6, H-1', H-6'), 3.82-3.88 (m, 2H, H-4, H-6'), 3.91 (s, 3H, 3 x H-h'), 3.97-4.02 (m, 2H, H-3, H-5'), 4.14 (d, 1H, J = 12 Hz, H-3'), 5.52 (t, 1H, J = 7.5 Hz, H-4'), 6.13 (d, 1H, J = 3 Hz, H-1); aromatic and *trans*-alkenyl protons: δ 6.42 (d, 1H, J = 15 Hz, H-a'), 6.86 (d, 1H, J = 6 Hz, H-c'), 7.13 (d, 1H, J = 3 Hz, H-d') 7.15 (s, 1H, H-g'), 7.34 (d, 1H, J = 3 Hz, H-b'); ¹³C NMR (75.5 MHz, (CD₃)CO): δ 18.5, 23.6, 24.6, 25.3, 55.5, 61.8, 63.0, 63.4, 65.8, 69.2, 73.4, 74.1, 76.9, 77.6, 81.9, 91.3, 99.2, 101.4, 103.5, 105.0, 110.6, 114.1, 115.3, 123.3, 126.3, 145.9, 148.0, 149.6, 166.5, 166.7; HRMS (ESI-positive mode): *m*/z calcd. for C₂₈H₃₉O₁₄ 599.2340; found 599.2333 [M+H]⁺

The synthesis of 4'-O-coumaroyl-2,1'-di-O-isopropylidene sucrose, 4'-coum 53: Compound 60 (200 mg, 0.215 mmol) and Pd(OAc)₂ (4.0 mg, 0.0179 mmol) were dissolved in CH₂Cl₂ (5.0 ml) and stirred at room temperature. Subsequently, Et₃SiH (45.8 μ L, 0.287 mmol) and NEt₃ (4.00 μ L, 0.0286 mmol) were added to the solution and the reaction was left to stir for 12 hours. Upon completion, the reaction was diluted with EtOAc (30.0 ml). The reaction mixture was washed twice with H₂O and the organic layer was collected and dried over anhydrous MgSO₄. After removal of

EtOAc, the crude product obtained was re-dissolved in pyridine (1.0 ml) and stirred at room temperature. Subsequently, 1.56 M 3HF·NEt₃ (413 µL, 0.645 mmol) and NEt₃ (60.0 µL, 0.430 mmol) were added to the solution and the reaction was left to stir for 12 hours. Upon completion, pyridine was removed. The crude product was then subjected to purification using 3:2 EtOAc/Hexane as eluent. In the end, 4'-coum **53** was obtained as white solid in 84% yield. mp 75.5-76.9°C; ¹H NMR (300 MHz, (CD₃)₂CO): isopropylidene rings: δ 1.08-1.31 (4 x s, 12H, 2 x (CH₃)₃C); sucrose unit: δ 3.35-3.43 (m, 2H, H-5, H-1'), 3.51-3.60 (m, 6H, H-2, H-4, 2 x H-6, H-1', H-6'), 3.68-3.77 (m, 2H, H-3, H-6'), 3.82-3.89 (m, 1H, H-5'), 3.99 (d, 1H, *J* = 12 Hz, H-3'), 5.39 (t, 1H, *J* = 7.5 Hz, H-4'), 5.99 (d, 1H, *J* = 3 Hz, H-1); *trans*-alkenyl and aromatic protons: δ 6.22 (d, 1H, *J* = 18 Hz, H-a'), 6.76 (d, 2H, *J* = 9 Hz, H-d', H-f'), 7.41 (d, 2H, *J* = 9 Hz, H-c', H-g'), 7.51 (d, 1H, *J* = 15 Hz, H-b'); ¹³C NMR (75.5 MHz, (CD₃)CO): δ 25.8, 62.5, 62.9, 64.1, 71.5, 73.0, 74.4, 74.6, 78.4, 78.9, 83.3, 93.4, 106.4, 114.8, 116.8, 126.7, 131.2, 146.5, 161.0, 167.2; HRMS (ESI-positive mode): *m*/z calcd. for C₂₇H₃₇O₁₃ 569.2234; found 569.2239 [M+Na]⁺

4'-O-sinapoyl-2,1'-di-O-isopropylidene sucrose, 4'-sinap **54**: Compound **61** (200 mg, 0.202 mmol) and Pd(OAc)₂ (3.8 mg, 0.0168 mmol) were dissolved in CH₂Cl₂ (5.0 ml) and stirred at room temperature. Subsequently, Et₃SiH (43.0 μ L, 0.269 mmol) and NEt₃ (3.76 μ L, 0.0269 mmol) were added to the solution and the reaction was left to stir for 12 hours. Upon completion, the reaction was diluted with EtOAc (30.0 ml). The reaction mixture

was washed twice with H₂O and the organic layer was collected and dried over anhydrous MgSO₄. After removal of EtOAc, the crude product obtained were dissolved in pyridine (1.0 ml) and stirred at room temperature. Subsequently, 1.56 M 3HF·NEt₃ (388 µL, 0.606 mmol) and NEt₃ (56.4 µL, 0.404 mmol) were added to the solution and the reaction was left to stir for 12 hours. Upon completion, pyridine was removed. The crude product was then subjected to purification using 3:2 EtOAc/Hexane as eluent. Compound **54** was obtained as white solid in 88% yield. mp 84.8-86.2°C; ¹H NMR (300 MHz, CDCl₃): isopropylidene rings: δ 1.46-1.52 (4 x s, 12H, 2 x (CH₃)₃C); methoxy and sucrose: δ 3.50-3.79 (m, 5H, H-2, H-5, 2 x H-1', H-6'), 3.81-3.91 (m, 8H, 2 x H-6, 6 x H-h'), 4.01-4.14 (m, 4H, H-3, H-4, H-5', H-6'), 4.37 (d, 1H, *J* = 12 Hz, H-3'), 5.59 (t, 1H, *J* = 7.5 Hz, H-4'), 5.96 (s, 1H, H-1); *trans*-alkenyl and aromatic protons: δ 6.24-6.29 (m, 1H, H-a'), 6.66 (s, 2H, H-c', H-g'), 7.51 (d, 1H, *J* = 15 Hz, H-b'); ¹³C NMR (75.5 MHz, CDCl₃): δ 18.3, 23.4, 24.4, 28.2, 55.5, 61.2, 61.4, 63.3, 65.6, 68.1, 68.1, 72.3, 72.8, 81.4, 90.6, 99.1, 101.6, 101.7, 102.5, 102.5, 104.4, 104.4, 113.7, 124.7, 136.6, 136.6, 145.7, 146.4, 146.4 166.3; HRMS (ESI-positive mode): *m*/z calcd. for C₂₉H₄₀O₁₅Na 651.2265; found 651.2245 [M+Na]⁺

General procedure 2 for acylation of 3'-O-Cbz 16: Synthesis of compounds 55-61

The (Substituted) cinnamic acid (1.12 mmol) and DCC (231 mg, 1.12 mmol) were added to a stirred solution of 3'-O-Cbz **16** (500, 0.746 mmol) and DMAP (9.2 mg, 0.0746 mmol) in CH_2Cl_2 (10 ml) at room temperature. After 12 hours (TLC), CH_2Cl_2 was removed under vacuum and the crude residue was triturated in cold diethyl ether (20 mL) and filtered. Diethyl ether was then removed under vacuum and the residue was purified using column chromatography using 4:1 Hexane/EtOAc as eluent. This procedure was used to synthesize compounds **55-61**.

4'-O-cinnamoyl-3'-O-carboxybenzyl-6'-O-tert-butyldimethylsiloxy-2,1'-di-O-isopropylidene sucrose

55: Following the general procedure 2, cinnamic acid **34** (166 mg, 1.12 mmol) was added to the solution. After purification, compound **55** was obtained as white solid in 82% yield. mp 88.0-89.5°C; ¹H NMR (300 MHz, CDCl₃): TBS: δ 0.02 (s, 6H, (CH₃)₂Si), 0.83 (s, 9H, (CH₃)₃CSi); isopropylidene rings: δ 1.33-1.51 (4 x s, 12H, 2 x (CH₃)₂C); Cbz and sucrose unit: δ 3.50-3.59 (m, 2H, H-5, H-1'), 3.62-3.69 (m, 2H, H-2, H-1'), 3.71-3.86 (m, 5H, H-4, 2 x H-6, 2 x H-6'), 4.10 (d, 1H, *J* = 12 Hz, H-3), 4.18-4.20 (m, 1H, H-5'), 4.93 (d, 1H, *J* = 3 Hz, H-3'), 5.15-5.26

(m, 2H, 2 x H-a), 5.54 (t, 1H, J = 4.5. Hz, H-4'), 6.01 (d, 1H, J = 3 Hz, H-1); Cbz and cinnamoyl protons: $\delta 6.38$ (d, 1H, J = 18 Hz, H-a'), 7.31-7.49 (m, 8H, H-c', H-d', H-e', H-f', H-g', H-c, H-d, H-e), 7.51 (d, 2H, J = 3 Hz, H-b, H-f), 7.66 (d, 1H, J = 18 Hz, H-b'); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.20,

-5.18, 18.5, 19.3, 24.2, 25.7, 25.8, 26.0, 29.3, 63.9, 70.3, 70.5, 73.1, 74.1, 81.2, 82.6, 91.5, 100.0, 101.8, 104.5, 117.3, 128.4, 128.5, 128.7, 128.9, 129.1, 130.8, 134.4, 135.0, 146.2, 145.8, 165.7; HRMS (ESI-positive mode): *m*/z calcd. for C₄₁H₅₇O₁₄Si 801.3518; found 801.3481 [M+H]⁺

4'-O-(3,4-dimethoxycinnamoyl)-3'-O-carboxybenzyl-6'-O-tert-

butyldimethylsiloxy-2, 1'-di-O-isopropylidene sucrose 56: Following the general procedure 2, diOMe acid **35** (233 mg, 1.12 mmol) was added to the solution. After purification, compound **56** was obtained as white solid in 81% yield. mp 91.7-92.7°C; ¹H NMR (300 MHz, CDCl₃): TBS: δ 0.00 (s, 6H, (CH₃)₂Si), 0.82 (s, 9H, (CH₃)₃CSi); isopropylidene rings: δ 1.32-1.49 (4 x s, 12H, 2 x (CH₃)₃C); Cbz, methoxy and sucrose unit: δ 3.50 (d, 1H, *J* = 12 Hz, H-5), 3.57-3.60 (m, 1H, H-1'), 3.65-3.79 (m, 2H, H-2, H-1'), 3.75-3.84 (m, 5H, H-4, 2 x H-6, 2 x H-6'); 3.87 (s, 6H, 6 x H-h'), 4.08 (d, 1H, *J* = 12 Hz, H-3), 4.16-4.18 (m, 1H, H-5'), 4.90 (d,

1H, J = 6 Hz, H-3'), 5.13-5.25 (m, 2H, 2 x H-a), 5.51 (t, 1H, J = 4.5 Hz, H-4'), 5.99 (d, 1H, J = 3 Hz, H-1); Cbz and dimethoxycinnamoyl protons: δ 6.24 (d, 1H, J = 15 Hz, H-a'), 6.84 (d, 1H, J = 9 Hz, H-g'), 6.99 (s, 1H, H-f'), 7.07 (s, 1H, H-c'), 7.26-7.37 (m, 5H, H-b, H-c, H-d, H-e, H-f), 7.58 (d, 1H, J = 15 Hz, H-b'); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.4, -5.3, 18.3, 19.2, 24.0, 25.6, 25.9, 29.1, 55.9, 56.0, 63.7, 63.9, 70.1, 70.3, 72.9, 73.9, 82.8, 82.6, 91.3, 99.8, 101.6, 104.3, 109.7, 111.0, 114.7, 122.9, 127.2, 128.2, 128.5, 128.7, 134.9, 145.9, 149.3, 151.4, 154.6, 165.7; HRMS (ESI-positive mode): *m*/z calcd. for C₄₃H₆₁O₁₆Si 861.3729; found 861.3700 [M+H]⁺

4'-O-(3,4,5-trimethoxycinnamoyl)-3'-O-carboxybenzyl-

6'-O-tert-butyldimethylsiloxy-2,1'-di-O-isopropylidene sucrose 57: Following the general procedure 2, triOMe acid **36** (266 mg, 1.12 mmol) was added to the solution. After purification, compound **57** was obtained as white solid in 87% yield. mp 92.0-93.1°C; ¹H NMR (300 MHz, CDCl₃): TBS: δ 0.00 (s, 6H, (CH₃)₂Si), 0.81 (s, 9H, (CH₃)₃CSi); isopropylidene rings: δ 1.29-1.49 (4 x s, 12H, 2 x (CH₃)₂C); Cbz, methoxy and sucrose unit: δ 3.45-3.60 (m, 4H, H-2, H-5, 2 x H-1'), 3.63-3.83 (m, 4H, H-4, 2 x H-6, H-6'), 3.85 (s, 9H, 9 x H-a), 3.92-4.10 (m, 2H, H-6', H-3), 4.15-4.18 (m, 1H, H-5'), 4.90 (d, 1H, *J* = 6 Hz, H-

3'), 5.13-5.24 (m, 2H, 2 x H-a), 5.52 (t, 1H, J = 4.5 Hz, H-4'), 5.92-5.99 (m, 1H, H-1'); Cbz and trimethoxycinnamoyl protons: δ 6.27 (d, 1H, J = 15 Hz, H-a'), 6.70 (s, 2H, H-c', H-g'), 7.28-7.37 (m, 5H, H-b, H-c, H-d, H-e, H-f); 7.56 (d, 1H, J = 15 Hz, H-b'); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.5, -5.4, -5.3, -5.2, 18.3, 19.1, 19.1, 24.0, 25.5, 25.6, 25.7, 25.9, 25.9, 29.1, 29.7, 30.9, 56.2, 61.0, 62.3, 63.5,

63.7, 63.9, 70.0, 70.1, 70.3, 72.9, 73.0, 81.0, 82.0, 82.3, 82.5, 90.8, 91.3, 99.8, 99.8, 101.6, 103.4, 104.3, 105.3, 116.3, 128.2, 128.5, 128.7, 128.7, 129.6, 134.7, 134.8, 140.3, 145.9, 153.5, 154.6, 165.5; HRMS (ESI-positive mode): *m*/z calcd. for C₄₄H₆₂O₁₇NaSi 913.3654; found 913.3663 [M+H]⁺

4'-O-(3,4-di-tert-butyldimethylsiloxylcinnamoyl)-3'-O-carboxybenzyl-6'-O-tert-butyldimethylsiloxy-

2,1'-di-O-isopropylidene sucrose 58: Following the general procedure 2, OTBS-caff acid 37 (457 mg, 1.12 mmol) was added to the solution. After purification, compound 58 was obtained as white solid in 86% yield. mp 69.0-70.1°C; ¹H NMR (300 MHz, CDCl₃): TBS: δ - 0.18 (s, 6H, (CH₃)₂Si), 0.65 (s, 9H, (CH₃)₃CSi); TBS on OTBS-caffeoyl group: δ 0.00 (s, 12H, 2 x (CH₃)₂Si), 0.77-0.78 (2 x s, 18H, 2 x (CH₃)₃CSi); isopropylidene rings: δ 1.14 (s, 3H, (CH₃)₂C), 1.22 (s, 3H, (CH₃)₂C), 1.30 (d, 6H, *J* = 12 Hz, (CH₃)₂C); Cbz and sucrose unit: δ 3.31-3.42 (m, 2H, H-5, H-1'), 3.49-3.53 (m, 2H, H-2, H-1'), 3.58-3.65 (m, 5H, H-4, 2 x H-6, 2 x H-6'), 3.90 (d, 1H, *J* = 12 Hz, H-3), 3.99-4.00 (m, 1H, H-5'), 4.72

(d, 1H, J = 6 Hz, H-3'), 4.95-5.07 (m, 2H, 2 x H-a), 5.33 (t, 1H, J = 4.5 Hz, H-4'), 5.81 (d, 1H, J = 3 Hz, H-1); Cbz group: δ 7.10-7.22 (m, 5H, H-b, H-c, H-d, H-e, H-f); Cbz and OTBS-caffeoyl protons: δ 5.97 (d, 1H, J = 15 Hz, H-a'), 6.61 (d, 1H, J = 9 Hz, H-f'), 6.78 (s, 2H, H-c', H-g'), 7.34 (d, 1H, J = 15 Hz, H-b'); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.4, -5.3, -4.1, -4.0, 18.3, 18.5, 18.5, 19.2, 24.0, 25.6, 25.9, 25.9, 25.9, 29.1, 62.3, 63.7, 63.8, 66.5, 70.1, 70.2, 73.0, 74.0, 76.6, 81.1, 82.6, 91.4, 99.8, 101.6, 104.3, 114.6, 120.5, 121.2, 122.5, 127.8, 128.2, 128.5, 128.7, 134.9, 145.9, 147.2, 149.8, 154.6, 165.8; HRMS (ESI-positive mode): m/z calcd. for C₅₃H₈₅O₁₆Si₃1061.5145; found 1061.5159 [M+H]⁺

4'-O-(4-tert-butyldimethylsiloxyl-3-methoxycinnamoyl)-3'-O-carboxybenzyl-6'-O-tert-

butyldimethylsiloxy-2,1'-di-O-isopropylidene sucrose **59**: Following the general procedure 2, OTBS-feru acid **38** (345 mg, 1.12 mmol) was added to the solution. After purification, compound **59** was obtained as white solid in 83% yield. mp 61.8-62.8°C; ¹H NMR (300 MHz, CDCl₃): TBS: δ -0.13 (s, 6H, (CH₃)₂Si), 0.68 (s, 9H, (CH₃)₃CSi); TBS on OTBS-feruloyl group: δ 0.00 (s, 6H, (CH₃)₂Si), 0.82 (s, 9H, (CH₃)₃CSi); isopropylidene rings: δ 1.19-1.34 (4 x s, 12H, 2 x (CH₃)₂C); Cbz, methoxy and sucrose unit: δ 3.43 (d, 1H, *J* = 9 Hz, H-5), 3.47-3.57 (m, 3H, H-2, 2 x H-1'), 3.62-3.71 (m, 7H, H-4, 2 x H-6, H-6', 3 x H-h'), 3.95 (d, 1H, *J* = 12 Hz, H-6'), 4.02-4.04 (m, 2H, H-3, H-5'), 4.76 (d, 1H, *J* = 6 Hz, H-3'), 5.04-5.11 (m, 2H, 2 x

H-a), 5.37 (t, 1H, J = 4.5 Hz, H-4'), 5.86 (d, 1H, J = 3 Hz, H-1); Cbz group and OTBS-feruloyl protons: δ 6.08 (d, 1H, J = 15 Hz, H-a'), 6.68 (d, 1H, J = 9 Hz, H-c'), 6.83-6.86 (m, 2H, H-d', H-g'), 7.15-7.27 (m, 5H, H-b, H-c, H-d, H-e, H-f), 7.44 (d, 1H, J = 15 Hz, H-b'); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.4, -5.3, -4.6, 18.3, 18.5, 19.2, 24.0, 25.6, 25.7, 25.9, 29.1, 55.5, 63.7, 63.9, 66.5, 70.1, 70.3, 72.9, 73.9, 76.6, 81.1, 82.6, 91.3, 99.8, 101.6, 104.3, 110.9, 114.7, 121.1, 122.5, 128.0, 128.2, 128.5, 128.7, 134.9, 146.1, 147.8, 151.2, 154.6, 165.8; HRMS (ESI-positive mode): m/z calcd. for C₄₈H₇₃O₁₆Si₂ 961.4437; found 961.4446 [M+H]⁺

4'-O-(4-tert-butyldimethylsiloxylcinnamoyl)-3'-O-carboxybenzyl-6'-O-tert-butyldimethylsiloxy-2,1'-

di-O-isopropylidene sucrose **60**: Following the general procedure 2, OTBS-coum acid **39** (311 mg, 1.12 mmol) was added to the solution. After purification, compound **60** was obtained as white solid in 87% yield. mp 91.7-92.7°C; ¹H NMR (300 MHz, CDCl₃): TBS: δ -0.18 (s, 6H, (CH₃)₂Si), 0.63 (s, 9H, (CH₃)₃CSi); TBS on OTBS-coumaroyl group: δ 0.00 (s, 6H, (CH₃)₂Si), 0.76 (s, 9H, (CH₃)₃CSi); isopropylidene rings: δ 1.14-1.31 (4 x s, 12H, 2 x (CH₃)₂C); Cbz and sucrose unit: δ 3.30-3.48 (m, 4H, H-2, H-5, 2 x H-1'); 3.50-3.66 (m, 5H, H-4, 2 x H-6, 2 x H-6'), 3.90 (d, 1H, *J* = 12 Hz, H-3), 3.96-4.01 (m, 1H, H-5'), 4.71 (d, 1H, *J* = 6 Hz, H-3'), 4.95-5.07 (m, 2H, 2 x H-a), 5.32 (t, 1H, *J* = 4.5 Hz, H-4'), 5.81 (d, 1H, *J* = 3 Hz, H-

1'); Cbz and OTBS-coumaroyl protons: δ 6.04 (d, 1H, J = 15 Hz, H-a'), 6.63 (d, 2H, J = 9 Hz, H-d', H-f'), 7.10-7.23 (m, 7H, H-b, H-c, H-d, H-e, H-f, H-c', H-g'), 7.41 (d, 1H, J = 15 Hz, H-b'); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.4, -5.3, -4.4, 18.2, 18.3, 19.2, 24.0, 25.6, 25.6, 25.9, 29.1, 63.7, 63.8, 70.1, 70.3, 72.9, 73.9, 76.6, 81.1, 82.6, 91.3, 99.8, 101.6, 104.3, 114.7, 120.6, 120.6, 127.5, 128.2, 128.5, 128.7, 129.9, 130.0, 134.9, 141.3, 145.7, 154.6, 158.1, 165.8; HRMS (ESI-positive mode): *m*/z calcd. for C₄₇H₇₁O₁₅Si₂ 931.4332; found 931.4323 [M+H]⁺

4'-O-(4-tert-butyldimethylsiloxyl-3,5-

dimethoxycinnamoyl)-3'-O-carboxybenzyl-6'-O-tertbutyldimethylsiloxy-2, l'-di-O-isopropylidene sucrose **61**: Following the general procedure 2, OTBS-sinap acid **40** (378 mg, 1.12 mmol) was added to the solution. After purification, compound **61** was obtained as white solid in 84% yield. mp 94.0-94.7°C; ¹H NMR (300 MHz, CDCl₃): TBS: δ -0.10 (s, 6H, (CH₃)₂Si), 0.72 (s, 9H, (CH₃)₃CSi); TBS on OTBS-sinapoyl group: δ 0.00 (s, 6H, (CH₃)₂Si), 0.86 (s, 9H, (CH₃)₃CSi); isopropylidene rings: δ 1.22-1.39

(4 x s, 12H, 2 x (CH₃)₂C); Cbz, methoxy and sucrose: δ 3.40 (d, 1H, J = 12 Hz, H-5), 3.47 (t, 1H, J = 9 Hz, H-1'), 3.55-3.60 (m, 2H, H-2, H-1'), 3.65-3.74 (m, 10H, H-4, 2 x H-6, H-6', 6 x H-h'), 3.98 (d, 1H, J = 12 Hz, H-6'), 4.04-4.10 (m, 2H, H-3, H-5'), 4.79 (d, 1H, J = 6 Hz, H-3'), 5.03-5.16 (m, 2H, 2 x H-a), 5.41 (t, 1H, J = 3 Hz, H-4'), 5.89 (d, 1H, J = 3 Hz, H-1); Cbz group and OTBS-sinapoyl protons: δ 6.09, 6.15 (d, 1H, J = 18 Hz, H-a'), 6.58 (s, 2H, H-c', H-g'), 7.18-7.29 (m, 5H, H-b, H-c, H-d, H-e, H-f), 7.45 (d, 1H, J = 15 Hz, H-b'); ¹³C NMR (75.5 MHz, CDCl₃): δ -5.4, -4.6, 18.3, 18.8, 19.1, 24.0, 25.6, 25.7, 25.9, 55.8, 62.5, 63.9, 70.3, 73.0, 83.0, 91.3, 99.8, 101.6, 104.3, 105.5, 126.8, 128.2, 128.5, 128.7, 134.9, 137.2, 146.4, 151.7, 156.6, 165.9; HRMS (ESI-positive mode): m/z calcd. for C₄₉H₇₅O₁₇Si₂ 991.4543; found 991.4542 [M+H]⁺

2. ¹H NMR and COESY spectra

3. References

 Panda, P.; Appalashetti, M.; Natarajan, M.; Mary, C.-P.; Venkatraman, S. S.; Judeh, Z. M. A., Synthesis and antiproliferative activity of helonioside A, 3',4',6'-tri-O-feruloylsucrose, lapathoside C and their analogs. *Eur. J. Med. Chem.* 2012, 58, 418-430.