Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Experimental section

Materials: Isopropyl chloroformate, and 4-aminobenzyl cyanide were purchased from Alfa Aesar Co. Ltd. Other reagents were obtained from Sigma-Aldrich or Aladdin Chemicals and used without further purification. Solvents were purified according to standard laboratory methods.

Instrumentation: ¹H NMR and ¹³C NMR of correlative derivatives were recorded on a Brüker AM500 spectrometer using Tetramethyl silane (TMS, δ =0 ppm) as internal standard. The Time-resolved PL decay spectra of the samples were also performed on an Edinburgh FLS980 fluorescence spectrometer at room temperature. PL measurements at room temperature were obtained on a SENS-9000 (Gilden Photonics, England). The digital photo-graphs were captured by the 550D digital cameras (Canon, Japan). Absolute PL quantum yields (PLQYs) were determined with a spectrometer C11347 (Hamamatsu, Japan). Powder X-ray diffraction experiments were measured on a Philips X'Pert Pro diffractometer (Netherlands). Measurements were made in a 2θ range of 5-45° at room temperature with a step of 0.02° (2 θ). The scan speed was 2 degree/min. The UV-vis absorption spectra were obtained on a Shimadzu UV-2600 spectrophotometer (Japan). Single crystal X-ray diffraction data were collected on a Rigaku R-AXIS RAPID diffractometer using the ω -scan mode with graphite-monochromator Mo·Ka radiation. The structures were solved with direct methods using the SHELXTL programs and refined with full-matrix leastsquares on F².

Synthesis of the intermediate compound BCN. Cholesteryl chloroformate (2.69 g, 6.0 mmol) was dissolved in dry THF (20 mL), and the solution was added dropwise to the dry THF (30 mL) solution consisting of 2-(4-aminophenyl)acetonitrile (0.66 g, 5.0 mmol) and triethylamine (2.10 mL, 15 mmol) at 0 °C. After stirring at room temperature for 12 h, the solution was poured into water and the product was extracted with $CHCl_3/C_2H_5OH$ at volume ratio of 1:3, and dried in a vacuum. The resulting precipitate was filtered and purified by column chromatography using ethyl acetate/petroleum ether. BCN bulk powder was purified by the recrystallization from CHCl₃ and methanol solution. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.41(d, J = 8.35 Hz, 2H); 7.26 (d, J = 8.65 Hz, 2H); 6.63(s, 1H); 5.42 (t, J = 2.55Hz, 1H); 4.64-4.60(m, 1H); 3.72(s, 2H); 2.43-2.36 (m, 2H); 2.02-1.89(m, 5H); 1.60-1.53 (m, 7H); 1.36-1.35 (m, 4H); 1.18-1.10 (m, 7H); 1.04(s, 3H); 1.03-0.99 (m, 3H); 0.93(d, J = 6.50 Hz, 3H); 0.88 (d, J = 4.45 Hz, 6H); 0.70 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 152.90; 139.50; 138.02; 128.62; 124.41; 122.85; 119.04; 117.88; 75.18; 56.69; 56.16; 50.03; 42.33; 39.74; 39.52; 38.43; 36.96; 36.58; 36.19; 35.79; 31.91; 31.88; 28.22; 28.08; 28.00; 24.28; 23.84; 23.00; 22.80; 22.55; 21.05; 19.32; 18.72; 11.86. MS (ESI) m/z: $[M+NH_4]^+$ calcd for $C_{36}H_{52}N_2O_2$, 544.4; found, 562.4.

Synthesis of PHIS: Isopropyl chloroformate (1.22 g, 10mmol) in dry chloroform (50 ml) was added at 0-5 °C with vigorous stirring to a solution of 4-aminobenzyl cyanide (1.32 g, 10 mmol) and triethylamine (1.01g, 10 mmol) in the same solvent (50 mL) under dry N_2 , over 20 min with cooling. After 1h further, the mixture was warmed to room temperature and left overnight to give a homogenous mixture. The solution was then washed with dilute HCl (10 mL), H₂O(50 mL), dried (Na₂SO₄) and

evaporated in vacuo to give a yellow solid (1.41 g), which was purified further by chromatography on silica with EtOAc/PE as the eluent. Yield 1.13g(51.8%).

¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* =8 Hz, 2H), 7.27 (d, 2H), 6.66 (s, 1H), 5.07-4.99 (*m*, 1H), 3.72 (*s*, 2H), 1.32 (d, *J* =8 Hz, 2H);¹³C NMR (100 MHz, CDCl₃) δ = 153.22, 138.11, 128.59, 124.36, 119.12, 118.04, 68.94, 22.98, 22.08; HRMS (ESI, m/z): Calcd for C₁₂H₁₅N₂O₂: 219.1134 [M]⁺; Found: 219.1127; m.p.: 187.7 °C

Synthesis of TDIS: The mixture of **TDCHO** (0.407g, 1mmol) and PhIS (0.259g, 1.2mmol) in dry ethanol (30 mL) was stirred for 5 min. And then, a small amount of CH₃ONa were added, and stirred for 18 hours at the room temperature. The desired target product TDIS was filtered and washed with EtOH three times to give deep red powder (0.473g, 78%).

¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, *J* =7.6 Hz, 1H), 8.5 (s, 1H), 7.94(d, *J* =8.4 Hz, 2H), 7.84 (d, *J* =7.6 Hz, 1H), 7.79 (d, *J* =8.8 Hz, 2H), 7.55 (d, *J* =8.8 Hz, 2H), 7.33 (t, *J* =8.4 Hz, 4H), 7.21-7.24 (m, 6H), 7.11 (*t*, *J* =7.2 Hz, 2H), 6.71 (s, 1H), 5.11-5.06 (m, 1H), 1.35 (d, *J* =6.4 Hz, 6H);¹³C NMR (100 MHz, CDCl₃) δ = 155.06, 153.12, 152.86, 148.67, 147.24, 139.48, 135.38, 133.88, 130.11, 129.90, 129.43, 128.93, 127.88, 127.06, 126.92, 125.18, 125.03, 123.64, 122.37, 118.66, 118.15, 112.07, 69.21, 22.10; HRMS (ESI, m/z): Calcd for C₃₇H₃₀N₅O₂S: 608.2120 [M+H]⁺; Found: 608.2109; m.p.: 187.7 °C

Samples	TDCH	TDIS	
Samples	(CCDC: 2150504)	(CCDC: 2150513)	
Formula	$C_{65}H_{75}N_5O_3S$	$C_{37}H_{29}N_5O_2S$	
Mr	1006.36	607.71	
Temperature (K)	150.0	170.0	
Crystal system	triclinic	monoclinic	
Space group	P1	C2/c	
Crystal size (mm)	$0.12 \times 0.08 \times 0.05$	$0.15 \times 0.08 \times 0.05$	
<i>a</i> (Å)	10.1099(2)	22.881(3)	
<i>b</i> (Å)	12.6710(3)	7.8734(9)	
<i>c</i> (Å)	22.5816(5)	35.026(4)	
α (°)	77.0490(10)	90	
eta (°)	79.9500(10)	103.060(7)	
γ (°)	89.7300(10)	90	
$V(Å^3)$	2774.13(11)	6146.6(13)	
Ζ	2	8	
$D_{\text{calc}} (\text{mg/m}^3)$	1.205	1.313	
Theta Range (°)	$4.08 \sim 149.332$	4.776 ~ 52.812	
F (000)	1080.0	2544.0	
h, k, l_{\max}	12,15,28	28,9,43	
N _{ref}	100088	6303	
T_{min}, T_{max}	0.916,0.955	0.986,0.993	
Independent reflections	21184	6271	
Goodness-of-fit on F ²	1.027	1.055	
$R_{\rm int}$	0.0357	0.0600	
$R_1[I>2\sigma(I)]$	0.0458	0.0500	
$wR_2[I>2\sigma(I)]$	0.1186	0.1227	
$R_1(\text{all data})$	0.0494	0.0797	
$wR_2(all data)$	0.1228	0.1429	
S	1.027	1.055	

 Table S1 Crystal data and structure refinement for crystals TDCH and TDIS.

 $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|, \ wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$

The change in magnitude of the dipole moment between the ground and excited states, that is, $\Delta \mu = [\mu_e - \mu_g]$ can be estimated using the Lippert–Mataga equation

$$hc(v_a - v_f) = hc(v_a^0 - v_f^0) + \frac{2(\mu_e - \mu_e)^2}{a_0^3}f(\varepsilon, n)$$

Where a_0 is the cavity radius in which the solute resides, estimated to be 9.7 Å. μ_g is the ground-state dipole moment, estimated to be 3.4 D (ω B97X at the basis set level of 6-31G**), μ_e is the excited state dipole moment. *h* and *c* are Planck's constant and the speed of light, respectively, and f(ε , *n*) is the orientation polarizability, defined as

$$f(\varepsilon,n) = \frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 - 1}$$

Where ε is the static dielectric constant and *n* is the optical refractivity index of the solvent. Through the analysis of the fitted line in low-polarity solvents, its corresponding μ_e was calculated to be 11.1 D according to Lippert-Mataga equation. However, in high-polarity solvents, the μ_e was increased to 19.2 D.

Solvents	f	$\lambda_{ m abs}$ nm	$\lambda_{ m flu}$ nm	v_a cm ⁻¹	v_f cm ⁻¹	$v_a - v_f$ cm ⁻¹	PLQYs
Hexane	0.0012	488	568	20492	17606	2886	99.5%
Toluene	0.014	492	610	20325	16393	3932	95.6%
Butyl ether	0.096	489	610	20450	16393	4056	88.9%
Isopropyl ether	0.145	487	612	20534	16340	4194	91.3%
Ethyl ether	0.167	485	620	20619	16129	4490	91.5%
THF	0.210	485	658	20619	15198	5421	59.3%
DCM	0.217	485	674	20619	14836	5783	56.3%
DMF	0.276	481	722	20790	13850	6940	2.7%
Acetone	0.284	477	690	20964	14493	6472	8.1%
Acetonitrile	0.305	470	708	21277	14124	7152	2.6%

Table S2 Detailed photo-physical data of TDCH in the different solvents

Fig. S1 The UV absorption spectra of TDCH, measured in the different solvents with increasing polarity (the orientational polarizability of solvent, Δf , –hexane: 0.0012; toluene: 0.014; butyl ether: 0.096; isopropyl ether (IPE): 0.145; ethyl ether: 0.167; tetrahydrofuran (THF): 0.210; methylene chloride (DCM): 0.217; N,N-dimethylformamide (DMF): 0.276; Acetone: 0.284; and acetonitrile (ACN): 0.305).

Fig. S2 PL spectra of **TDCH** in the different solvents (the orientational polarizability, Δf , –hexane: 0.0012; toluene: 0.014; butyl ether: 0.096; isopropyl ether (IPE): 0.145; ethyl ether: 0.167; tetrahydrofuran (THF): 0.210; methylene chloride (DCM): 0.217; N,N-dimethylformamide (DMF): 0.276; Acetone: 0.284; and acetonitrile (ACN): 0.305).), the excitation wavelength is 450 nm.

Fig. S3 Linear fitting of orientation polarization (Δf) of the solvent media with the Stokes shift (v_a-v_f) for TDCH (the detailed data are listed in Table S2, Supporting Information);

Fig. S4 a,b)The UV absorption spectra of TDCH (10 μ M) in THF/water mixtures with different water fractions (f_w). The absorption spectra of the luminophor in THF and in mixtures of less than 50% H₂O with THF were almost identical. However, above 50% volume fraction (fw) of water, the absorption bands became more intense and moved to longer wavelengths. Moreover, tailing was clearly observed in visible region, and this absorption was due to the presence of nanoparticle suspensions.

Fig. S5 Dihedral angles between acrylonitrile and BTA as well as benzene units

Fig. S6 The UV absorption spectra (a) and PL spectra (b) of TDCH and TDIS in THF (10 μ M)

Fig. S7 (a) Steady-state PL spectra and (b) Time-resolved PL decay curves of TDCH and TDIS crystalline powder.

Fig. S8 Crystal structures of **TDIS**: (a) Lateral view of the column arrangement; (b) top view of the **TDIS**; (c) and the dihedral angles of the **TDIS** single-crystal.

Fig. S9 The UV absorption spectra (a) and PL spectra (b) of TDCH crystals during the

depressurizing process.

Fig. S10 Absorption spectra of **TDCH** (a, b) and **TDIS** (c, d) crystalline powders under different hydrostatic pressures.

Fig. S11 IR spectra of TDCH crystals in the range of 1000-3200 cm⁻¹ at various pressures

Fig. S12 The ¹H NMR spectrum of TDCH in the CDCl₃.

Fig. S13 The ¹³C NMR spectrum of the TDCH in the CDCl₃.

Fig. S14 The HRMS spectrum of the TDCH.

Fig. S16 The ¹³C NMR spectrum of the PhIS in the CDCl₃.

Fig. S17 The HRMS spectrum of the PhIS.

Fig. S19 The ¹³C NMR spectrum of the TDIS in the CDCl₃.

Fig. S20 The HRMS spectrum of the TDIS.