Electronic Supplementary Information

Highly dispersed palladium nanoclusters anchored on nanostructured hafnium(IV) oxide as highly efficient catalysts for the Suzuki–Miyaura coupling reaction

Xiaoxue Wu,^a Wenting Lin,^a Li Wang,^a Nan Li,^a Gaomei Tu,^a Yanghe Fu,^a De-Li Chen,^a Weidong Zhu,^a Guihua Chen^b and Fumin Zhang^{*a}

^{*a*}Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People's Republic of China ^{*b*}School of Pharmaceutical and Material Engineering, Taizhou University, 318000 Jiaojiang People's Republic of China

[*] Corresponding Author: E-mail: zhangfumin@zjnu.edu.cn

1. Experimental

1.1. Chemicals

All chemicals are commercially available and used directly without any treatment: hafnium (IV) chloride (HfCl₄, Strem, 99.9%), zirconium (IV) tetrachloride (ZrCl₄, Strem, 99.9%), 2-aminoterephthalic acid (NH₂-BDC, TCI, >98%), palladium chloride (PdCl₂, TCI, 98%), hydrochloric acid (HCl, Sinopharm Chemical Reagent Co., Ltd., 37%), N, Ndimethylformamide (DMF, Sinopharm Chemical Reagent Co., Ltd., ≥99.5%), methanol (Sinopharm Chemical Reagent Co., Ltd., ≥99.5%), ethanol (Sinopharm Chemical Reagent Co., Ltd., ≥99.5%), acetic acid (Sinopharm Chemical Reagent Co., Ltd., ≥99.5%), acetonitrile (Sinopharm Chemical Reagent Co., Ltd., ≥99.5%), acetone (Sinopharm Chemical Reagent Co., Ltd., ≥99.5%), ethyl acetate (Sinopharm Chemical Reagent Co., Ltd., ≥99.5%), phenylboronic acid (C₆H₇BO₂, J&K, 99%), bromobenzene (C₆H₅Br, damas-beta, 98%), iodobenzene (C₆H₅I, Aldrich, 99%), chlorobenzene (C₆H₅Cl, Mreda, \geq 99%), 2-bromobenzaldehyde (C₇H₅BrO, Meryer, 98%), 3-bromobenzaldehyde (C7H5BrO, Aldrich, 97%), 4-bromobenzaldehyde (C7H5BrO, Aldrich, 99%), 4bromotoluene (C7H7Br, Aldrich, 99%), 2-bromotoluene (C7H7Br, Meryer, 99%), 4iodotoluene (C₇H₇I, Aldrich, 99%), 4-bromoanisole (C₇H₇BrO, Aldrich, 99%), potassium carbonate (K₂CO₃, Aldrich, 99.5%), caesium carbonate (Cs₂CO₃, Meryer, 99.9%), sodium hydroxide (NaOH, Kermel, >96%), sodium carbonate (Na₂CO₃, Sinopharm Chemical Reagent Co., Ltd., ≥99.8%), natrium bicarbonate (NaHCO₃, Sinopharm Chemical Reagent Co., Ltd., \geq 99.8%), and triethylamine (C₆H₁₅N, Aldrich, \geq 99%). Deionized water with a resistance >18.2 M Ω was obtained from a Millipore

Milli-Q ultrapure water purification system. Hydrogen (H₂, Zhejiang Jinhua Wucheng Datong Gas Co., Ltd, 99.999%). Nitrogen (N₂, Zhejiang Jinhua Wucheng Datong Gas Co., Ltd, 99.999%).

1.2. Characterization

The X-ray powder diffraction (XRD) patterns were obtained on a Philips PW3040/60 diffractometer using Cu K α radiation (λ =0.1541 nm, 40 kV, 30 mA).

 N_2 adsorption isotherms were measured at -196 °C on a Micromeritics ASAP 2020 instrument. The samples were outgassed under vacuum at 200 °C for 12 h before adsorption measurement. The surface area was determined using the Brunauer-Emmett-Teller (BET) method.

The morphology of the samples were obtained by field emission SEM on a scanning electron microscope (a Hitachi S-4800 microscope) and TEM on a transmission electron microscope (JEM2100F, JEOL, Japan) working at 200 kV.

X-ray photoelectron spectroscopy (XPS) data were collected on an ESCALAB250 electron spectrometer from VG Scientific using 300 W Al-K α radiation. The XPS data were internally calibrated, fixing the binding energy of C 1s at 284.8 eV.

The surface properties of the catalysts were measured by temperature-programmed desorption of ammonia (NH₃-TPD, a Micro-meristics AutoChem II 2920 instrument). The sample (150 mg) was purged under a flow of He of 30 mL/min at 350 °C for 2 h. After purging, the sample was cooled to 110 °C, and the feed composition was switched to a mixture containing 20% NH₃ in He (30 mL/min) for 30 min. The physisorbed ammonia was flushed out with He flow for 1 h. Afterward, the sample cell was heated at

10 °C/min under He to 900 °C. The concentration of the desorbed ammonia was monitored continuously with a TCD detector.

The amounts of the metal Pd species in the different samples were determined by an IRIS Intrepid II XSP inductively coupled plasma-atomic emission spectrometer (ICP-AES).

Electron Paramagnetic Resonance (EPR) measurement was obtained on the Bruker EPR EMXplus-9.5/12 at room temperature. The frequency and power of the microwave were set to 9.847226 GHz and 2.0000 mW, respectively. Gauss field modulation at 100 kHz and a time constant of 20 ms was used for detection.

The nuclear magnetic resonance (NMR) spectra of the products were recorded on a Bruker Avance 600 MHz spectrometer at 297 K using CDCl₃ (δ H=7.26, δ C=77.0) as an internal standard for ¹H NMR and 125 MHz for ¹³C NMR.

1.3. Catalyst preparation

Synthesis of Pd@NH₂-UiO-66(Hf)

Pd@NH₂-UiO-66(Hf) was synthesized by a one-pot strategy according to the procedure reported in the previous papers with some slight modification.¹ Briefly, HfCl₄ (4.7 mmol) and NH₂-BDC (4.7 mmol) were dissolved in DMF (200 mL) in a round-bottom flask (500 mL in capacity) and then added acetic acid (36 mL), deionized water (5.0 mL), and PdCl₂ precursor (0.5 mL, 10 mg/mL) to the solution. The mixture was treated under ultrasound for 10 min to form a homogeneous solution. Afterward, the mixture was heated at 75 °C for 20 h. Subsequently, the temperature was raised to 130 °C, and the mixture was allowed to stir for another 4 h, and then cooled to room

temperature. The product was centrifugated at 9000 rpm for 4 min, washed with DMF and methanol three times, respectively, and finally dried under vacuum at 120 °C for 12 h. Other control samples, including Pd@NH₂-UiO-66(Zr), NH₂-UiO-66(Zr), and NH₂-UiO-66(Hf), were also synthesized by a similar method.

Synthesis of Pd/HfO₂@CN

The Pd/HfO₂@CN powders were fabricated directly via one-step pyrolysis strategy. Typically, the Pd@NH₂-UiO-66(Hf) precursor (0.1 g) was transferred into a tube furnace. The furnace was heated at 600 °C at a rate of 3 °C/min with nitrogen gas flow (flow rate: 100 ml/min). The furnace was held at this temperature for 3 h and then allowed to cool to room temperature. Before use, the obtained powder was further reduced in a stream of hydrogen $(H_2)/N_2$ (10:40 mL/min) at 250 °C for 4 h. Pd/ZrO₂@CN was prepared following the same procedure.

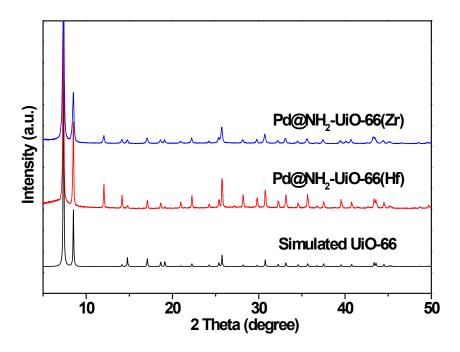


Fig. S1 XRD patterns of simulated UiO-66, the synthesized Pd@NH₂-UiO-66(Hf) and

Pd@NH₂-UiO-66(Zr).

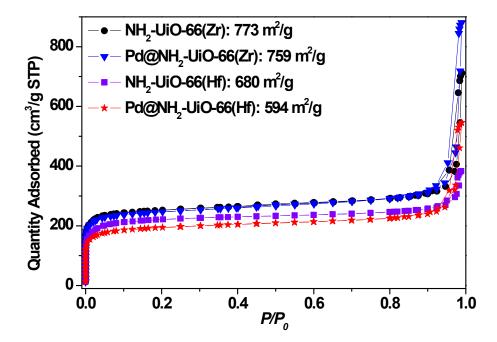


Fig. S2 N₂ adsorption–desorption isotherms of NH₂-UiO-66(Zr), Pd@NH₂-UiO-66(Zr), NH₂-UiO-66(Hf), and Pd@NH₂-UiO-66(Hf).

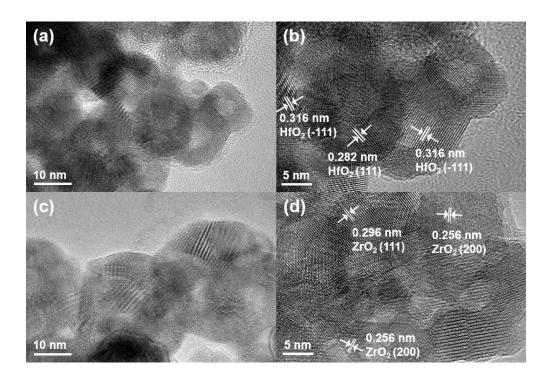


Fig. S3 TEM images of Pd@HfO₂ (a and b) and Pd@ZrO₂ (c and d).

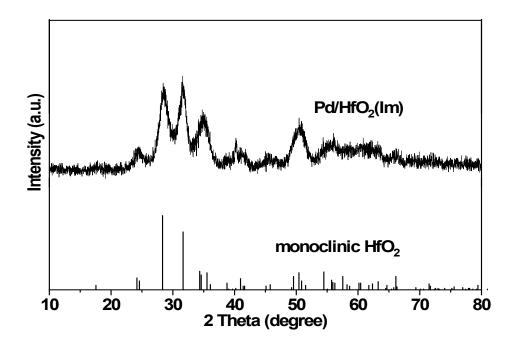


Fig. S4 XRD pattern of Pd/HfO₂(Im).

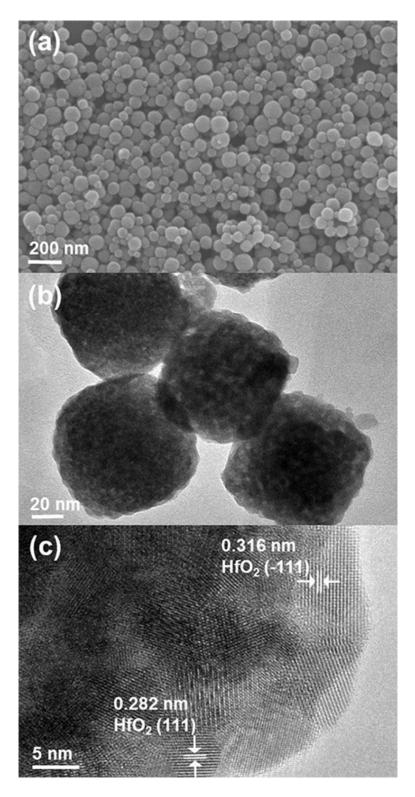


Fig. S5 SEM (a), TEM (b), and HRTEM (c) images of Pd/HfO₂(Im).

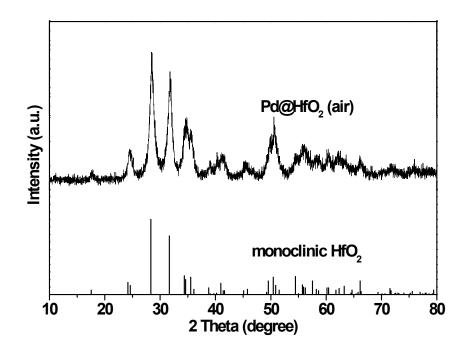


Fig. S6 XRD pattern of Pd@HfO₂(air).

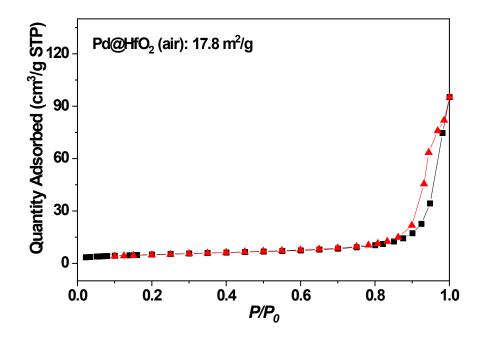


Fig. S7 N₂ adsorption-desorption isotherms of Pd@HfO₂(air).

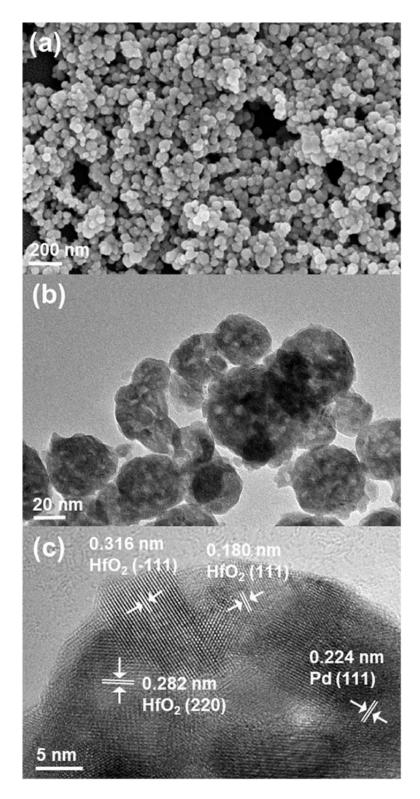


Fig. S8 SEM (a), TEM (b), and HRTEM (c) images of Pd@HfO₂(air).

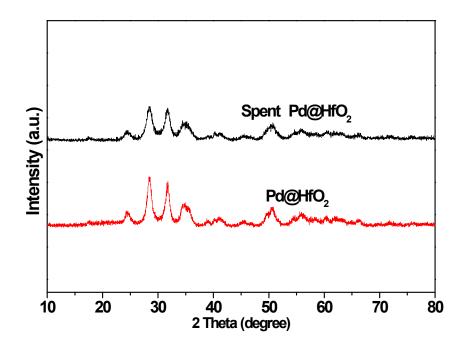


Fig. S9 XRD patterns of the fresh and used Pd@HfO₂ catalyst.

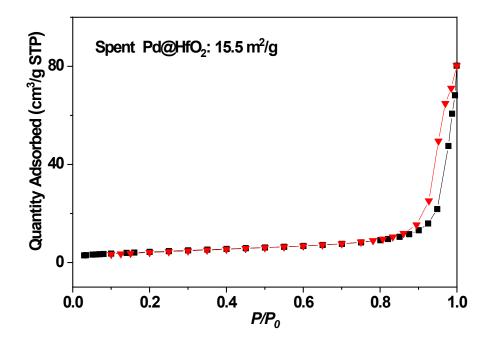


Fig. S10 N₂ adsorption isotherms of the spent Pd@HfO₂ catalyst.

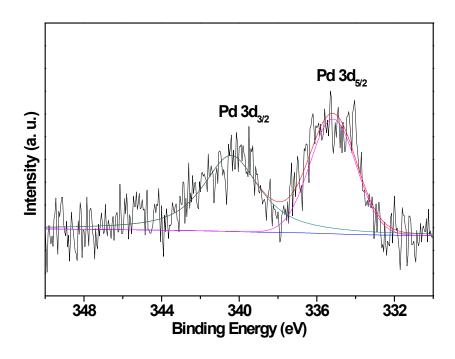


Fig. S11 High resolution XPS spectrum of Pd 3d for the spent $Pd@HfO_2$ catalyst.

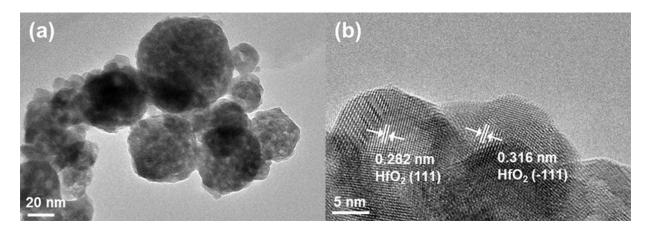


Fig. S12 TEM (a) and HRTEM (b) images of the spent Pd@HfO₂ catalyst.

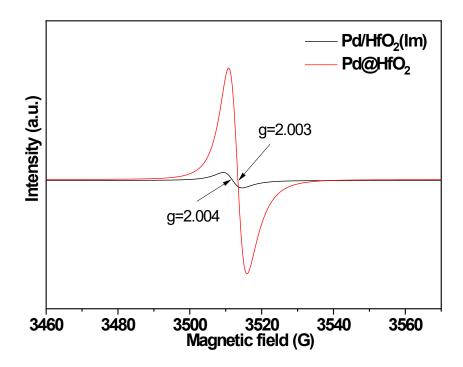


Fig. S13 EPR spectra of $Pd@HfO_2$ and $Pd/HfO_2(Im)$.

The $Pd@HfO_2$ has more oxygen vacancies in comparison with that of $Pd/HfO_2(Im)$, likely owning to the strong interaction between HfO_2 and Pd formed during the two-step thermal treatment, which is beneficial for forming a highly stable catalyst.

$ \begin{array}{c} Br & B(OH)_2 \\ Fr & R & H & Catalyst \\ K_2CO_3, EtOH/H_2O & & & & \\ Fr & R & H & R & \\ Fr & R & H & R & \\ Fr & R & H & R & \\ Fr & R & H & R & \\ Fr & R & H & R & \\ Fr & R & H & R & \\ Fr & R & H & R & \\ Fr & R & H & R & \\ Fr & R & H & R & \\ Fr & R & H & R & \\ Fr & R & H & R & \\ Fr & R & H & \\ Fr & R & \\ Fr & $									
Entry	Catalyst	R	Products	Т	Yield				
Entry	Catalyst	ĸ	Troducts	(°C)	(%)				
1	Pd@HfO ₂	Н		50	>99				
2	Pd@NH ₂ -UiO-66(Hf)	Н		50	50				
3	Pd@NH ₂ -UiO-66(Zr)	Н		50	41				
4	Pd/HfO2@CN	Н		50	85				
5	Pd/ZrO2@CN	Н		50	80				
6	Pd@HfO ₂	4-CH ₃		80	75				
7	Pd@HfO ₂	4-OCH ₃	H ₃ CO	80	72				
8	Pd@HfO ₂	2-CH ₃		80	70				

 Table S1 Suzuki-Miyaura cross-coupling reaction of bromobenzene and arylboronic acids

 using palladium catalysts

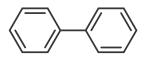
Reaction conditions: bromobenzene (0.32 mmol), arylboronic acid (0.38 mmol), K_2CO_3 (0.38 mmol), Ethanol/H₂O = 1:1 (4.0 mL), catalyst (0.1 mol%), 2 h.

Entry	Catalyst	Reaction conditions	Yield	Ref.		
		Catalyst/solvent/base/temperature/time	(%)			
1	Pd@HfO ₂	0.1 mol% catalyst/EtOH: H ₂ O	>99	This work		
		(1:1)/K ₂ CO ₃ (1.2 equiv)/50 °C/2 h				
2	Pd-Pt	4 mg catalyst/EtOH: H ₂ O (1:1)/Cs ₂ CO ₃	98	2		
	Nanodendrites	(1.2 equiv)/80 °C/2 h				
3	Pd@porous	0.003 mol% catalyst/DMF: H ₂ O	100	3		
	SiO ₂	(21:1)/Cs ₂ CO ₃ (2.0 equiv)/200 °C/1 h				
4	Pd/Porous-	0.3 mol% catalystDMF: H ₂ O	72.3	4		
	nanorods-CeO ₂ -	(1:1)/K ₂ CO ₃ (3.0 equiv)/90 °C/1 h				
	160					
5	Pd@Mesopor	2 mol% catalyst/EtOH: H ₂ O	98	5		
	ous Carbon	(1:1)/Na ₂ CO ₃ (2.0 equiv)/80 °C/1 h				
6	Pd@Fluorescent	0.05 mol% catalyst/H ₂ O/K ₂ CO ₃ (2.0	91	6		
	Material	equiv)/80 °C/10 h				
7	Pd-TiO ₂ /Carbon	10 mg catalyst/H ₂ O/K ₂ CO ₃ (2.0	5	7		
	Nanofibers	equiv)/50 °C/5 h				
8	SiO ₂ /(Tetraethyl	0.75 mol% catalyst/Toluene/K ₃ PO ₄ (2.0	86	8		
	ene glycol)/Pd	equiv)/110 °C/12 h				
9	Pd/SBA-15	0.2 mol% catalyst/EtOH: H ₂ O	88	9		

 Table S2 Comparison of catalytic activity for the Suzuki-Miyaura coupling reaction over

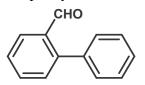
 different catalysts.

(1:3)/K₂CO₃ (3.0 equiv)/85°C/10 h

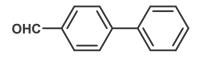

10	Pd/Pr	0.4 mol% catalyst/DMF: H ₂ O	86	10
	Coordination	(1:1)/K ₂ CO ₃ (2.0 equiv)/70 °C/3 h		
	Polymers			
11	Pd@gel-Fe ₃ O ₄	1 mol% catalyst/MeOH/Na ₂ CO ₃ (3.0	89	11
		equiv)/60 °C/5 h		
12	Pd/TiO ₂	0.7 mol% catalyst/NMP: H ₂ O (2.5:	91	12
		1)/Na ₂ CO ₃ (1.5 equiv)/120 °C/4 h		
13	Pd/Fe ₃ O ₄ NPs	0.2 mol% catalyst/MeOH/K ₂ PO ₃ (3.0	91	13
		equiv)/60 °C/18 h		

Reference

- S. Zheng, P. Y. Yang, F. M. Zhang, D. L. Chen and W. D. Zhu, *Chem. Eng. J.*, 2017, 328, 977–987.
- Z. J. Wang, J. J. Lv, J. J. Feng, N. B. Li, X. H. Xu, A. J. Wang and R. H. Qiu, *RSC Adv.*, 2015, 5, 28467–28473.
- J. C. Park, E. Heo, A. Kim, M. Kim, K. H. Park and H. Song, *J. Phys. Chem. C*, 2011, 115, 15772–15777.
- 4 S. Zhang, J. Li, W. Gao and Y. Q. Qu, *Nanoscale*, 2015, 7, 3016–3021.
- 5 L. Zhong, A. Chokkalingam, W. S. Cha, K. S. Lakhi, X. Y. Su, G. Lawrence and A. Vinu, *Catal. Today*, 2015, 243, 195–198.
- Q. Cai, G. S. Liang, Y. F. Xu, X. H. Qian and W. P Zhu, *RSC Adv.*, 2016, 6. 60996–61000.
- 7 J. Wang, J. Bai, H. Liang and C. Li, *Colloids Surf. A*, 2019, **572**, 283–289.
- 8 N. Kim, M. S. Kwon, C. M. Park and J. Park, *Tetrahedron Lett.*, 2004, 45, 7057–7059.
- P. Han, X.M. Wang, X.P. Qiu, X.L. Ji and L.X. Gao, J. Mol. Catal. A-Chem. 2007, 272, 136–141.
- 10 L. X. You, W. H. Zong, G. Xiong, F. Ding, S. J. Wang, B. Y. Ren, I. Dragutan, V. Dragutan and Y. G. Sun, *Appl. Cata. A-Gen.*, 2016, **511**, 1–10.
- 11 Y. T. Liao, L. S. He, J. Huang, J. Y. Zhang, L. Zhuang, H. Shen and C. Y. Su, ACS Appl. Mater. Interfaces, 2010, **2**, 2333–2338.
- 12 M. Nasrollahzadeh and S. M. Sajadi, J. Colloid. Interf. Sci., 2016, 465, 121–127.
- M. Nasrollahzadeh, S. M. Sajadi, A. Rostami-Vartooni and M. Khalaj, J. Mol. Catal.
 A-Chem., 2015, 396, 31–39.


Analytical data of the products

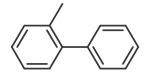
biphenyl


¹H NMR (600 MHz, CDCl₃) δ =7.89–7.73 (m, 1H), 7.71–7.58 (m, 1H), 7.61–7.40 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ =141.41 (s), 128.96 (s), 128.78 (s), 127.40 (d, *J*=14.0).

2-biphenylcarboxaldehyde

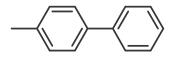
¹H NMR (600 MHz, CDCl₃) δ =10.02 (s, 1H), 8.07 (dd, *J*=7.8, 1.1, 1H), 7.66 (td, *J*=7.5, 1.3, 1H), 7.58–7.44 (m, 5H), 7.44–7.37 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 192.44, 145.99, 137.77, 133.74, 133.60, 130.82, 130.14, 128.47, 128.16, 127.81, 127.59.

4-biphenylcarboxaldehyde

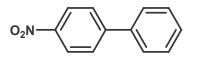

¹H NMR (600 MHz, CDCl₃) δ =10.05 (s, 1H), 7.95 (d, *J*=8.0, 2H), 7.74 (d, *J*=8.0, 2H), 7.64 (d, *J*=7.5, 2H), 7.47 (dt, *J*=33.0, 7.3, 3H). ¹³C NMR (151 MHz, CDCl₃) δ =191.98 (s), 147.11 (s), 139.66 (s), 135.70 (s), 135.23 (s), 132.75 (s), 130.32 (s), 129.10 (s), 128.57 (s), 128.00 (d, *J*=18.7), 127.67 (s), 127.40 (s), 127.18 (s).

4-methoxybiphenyl

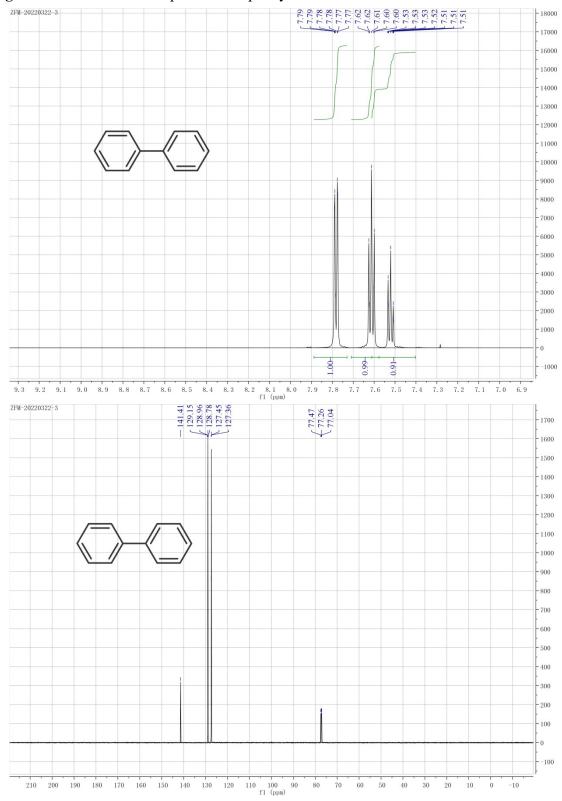
H₃CO


¹H NMR (600 MHz, CDCl₃) δ =7.67–7.59 (m, 1H), 7.50 (s, 1H), 7.39 (t, *J*=7.4, 1H), 7.06 (d, *J*=8.7, 1H), 3.91 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ =159.22 (s), 140.89 (s), 133.83 (s), 128.81 (s), 128.23 (s), 126.78 (d, *J*=9.9), 114.28 (s), 55.39 (s).

2-phenyltoluene


¹H NMR (600 MHz, CDCl₃) δ =7.77–7.35 (m, 1H), 2.67–2.48 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ = 142.21 (t, *J*=5.7), 135.53 (d, *J*=2.7), 130.55 (d, *J*=4.6), 130.05 (d, *J*=4.6), 129.43 (d, *J*=4.4), 128.98 (s), 128.31 (d, *J*=4.6), 127.50 (d, *J*=4.7), 127.00 (d, *J*=4.3), 126.03 (d, *J*=5.0), 20.73 (s).

4-phenyltoluene


¹H NMR (600 MHz, CDCl₃) δ =7.74 (dd, *J*=8.3, 1.2, 1H), 7.66 (d, *J*=8.1, 1H), 7.58 (t, *J*=7.8, 1H), 7.48 (s, 1H), 7.40 (d, *J*=7.9, 1H), 2.55 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ =141.32 (s), 138.51 (s), 137.13 (s), 129.64 (s), 128.87 (s), 128.69 (s), 127.34–127.06 (m), 126.96 (s), 21.24 (s).

4-nitrobiphenyl

¹H NMR (600 MHz, CDCl₃) δ 8.35–8.30 (m, 1H), 7.78–7.74 (m, 1H), 7.67–7.64 (m, 1H), 7.55–7.45 (m, 2H), 7.28 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 147.66 (s), 138.79 (s), 129.17 (s), 128.93 (s), 127.82 (s), 127.40 (s), 124.13 (s).

Figs. S14-S19 ¹H and ¹³C NMR spectra of coupling products.

Fig. S14 ¹H and ¹³C NMR spectra for biphenyl.

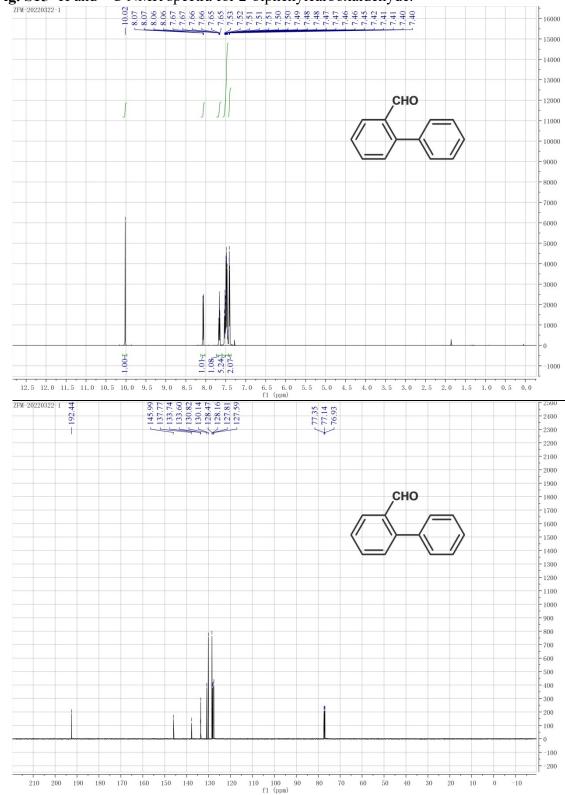


Fig. S15 ¹H and ¹³C NMR spectra for 2-biphenylcarboxaldehyde.

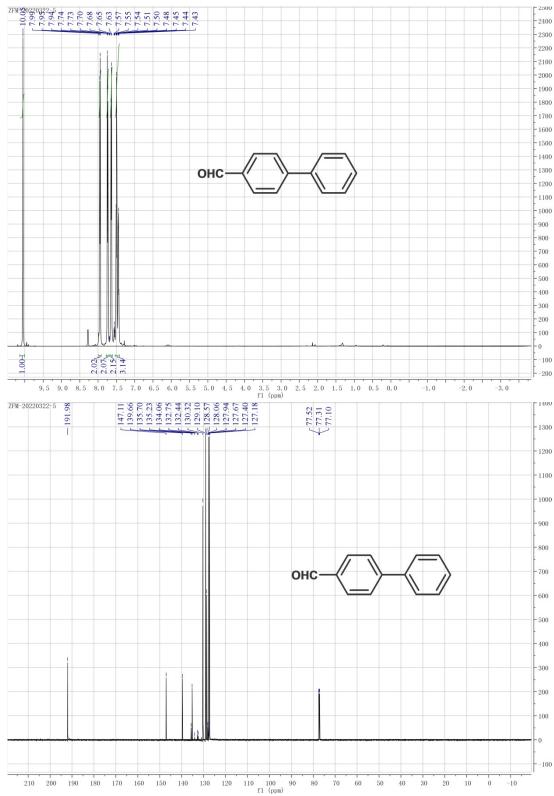
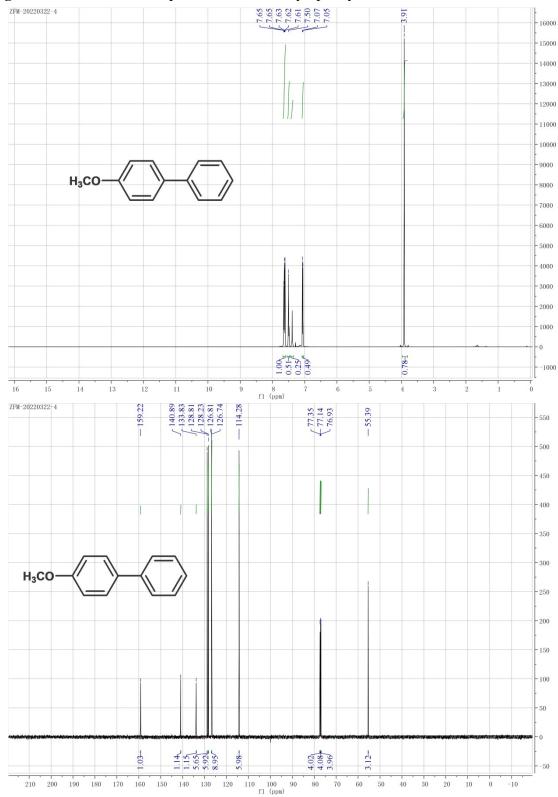
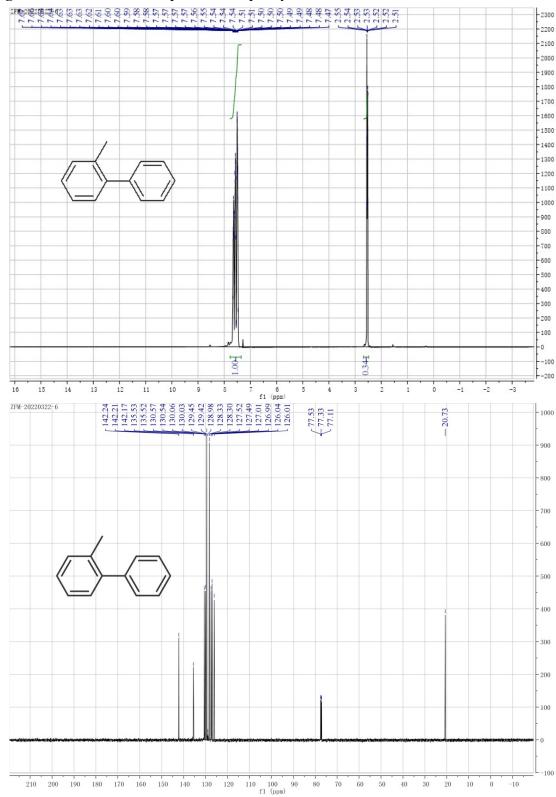
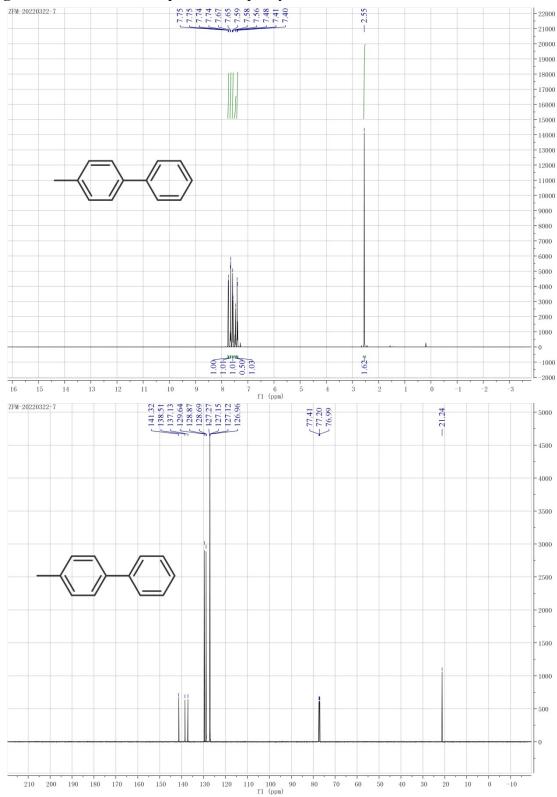


Fig. S16 ¹H and ¹³C NMR spectra for 4-biphenylcarboxaldehyde.

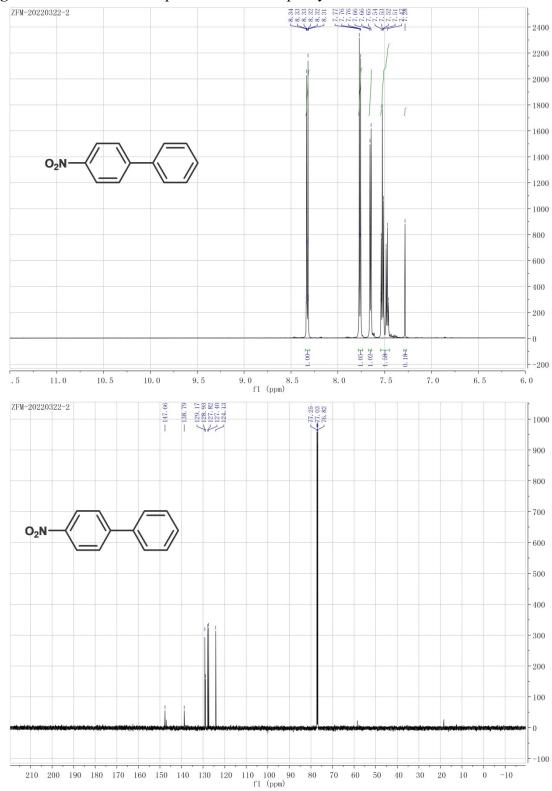

Fig. S17 ¹H and ¹³C NMR spectra for 4-methoxybiphenyl.

Fig. S18 ¹H and ¹³C NMR spectra for 2-phenyltoluene.

Fig. S20 ¹H and ¹³C NMR spectra for 4-nitrobiphenyl.

MS spectra

Fig. S21 MS spectra of the biphenyl.

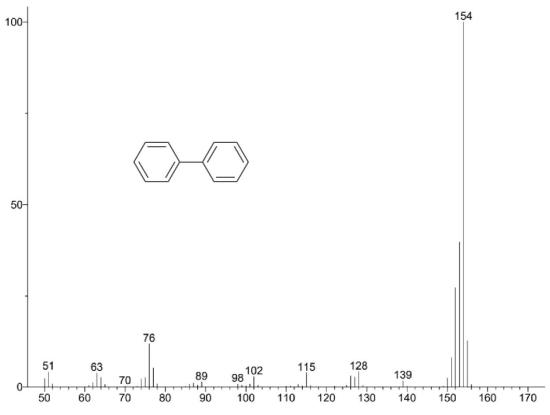


Fig. S22 MS spectra of the 2-biphenylcarboxaldehyde.

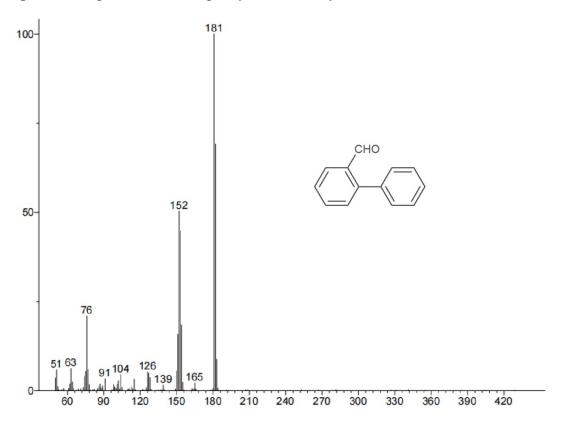


Fig. S23 MS spectra of the 3-biphenylcarboxaldehyde.

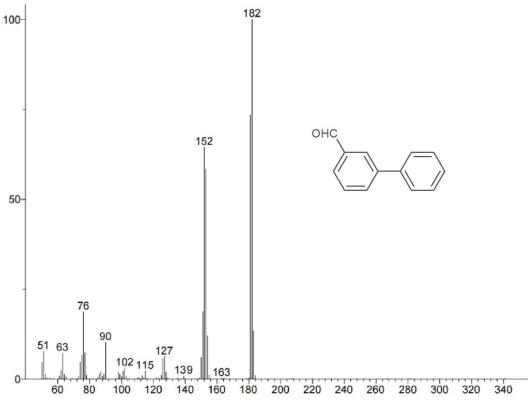
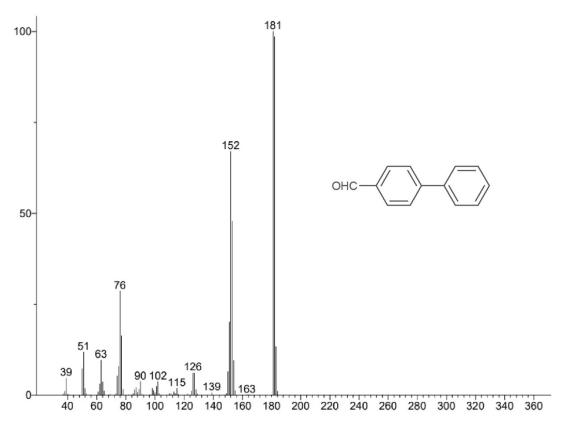



Fig. S24 MS spectra of the 4-biphenylcarboxaldehyde.

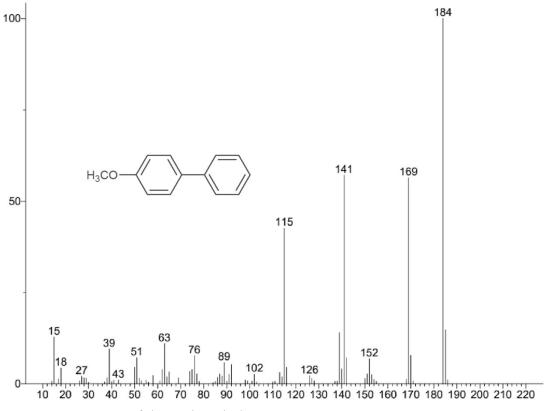


Fig. S26 MS spectra of the 4-phenyltoluene.

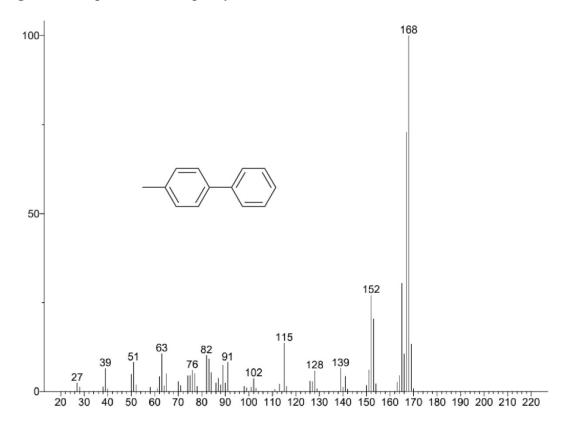


Fig. S27 MS spectra of the 2-phenyltoluene.

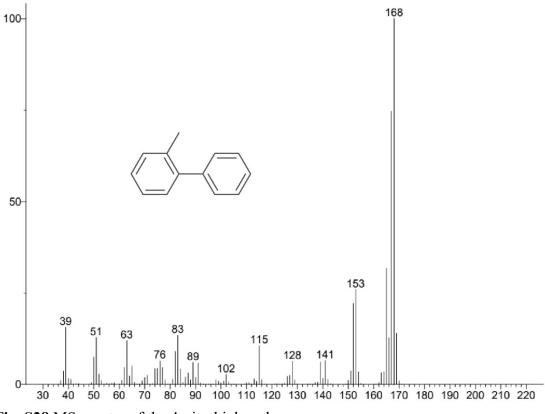
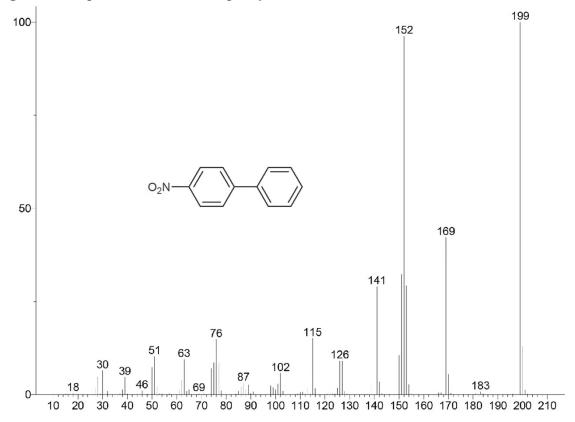



Fig. S28 MS spectra of the 4-nitrobiphenyl.

