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1. Experimental

1.1. Chemicals

All chemicals are commercially available and used directly without any treatment: 

hafnium (Ⅳ) chloride (HfCl4, Strem, 99.9%), zirconium (Ⅳ) tetrachloride (ZrCl4, Strem, 

99.9%), 2-aminoterephthalic acid (NH2-BDC, TCI, >98%), palladium chloride (PdCl2, 

TCI, 98%), hydrochloric acid (HCl, Sinopharm Chemical Reagent Co., Ltd., 37%), N, N-

dimethylformamide (DMF, Sinopharm Chemical Reagent Co., Ltd., ≥99.5%), methanol 

(Sinopharm Chemical Reagent Co., Ltd., ≥99.5%), ethanol (Sinopharm Chemical 

Reagent Co., Ltd., ≥99.5%), acetic acid (Sinopharm Chemical Reagent Co., Ltd., 

≥99.5%), acetonitrile (Sinopharm Chemical Reagent Co., Ltd., ≥99.5%), acetone 

(Sinopharm Chemical Reagent Co., Ltd., ≥99.5%), ethyl acetate (Sinopharm Chemical 

Reagent Co., Ltd., ≥99.5%), phenylboronic acid (C6H7BO2, J&K, 99%), bromobenzene 

(C6H5Br, damas-beta, 98%), iodobenzene (C6H5I, Aldrich, 99%), chlorobenzene (C6H5Cl, 

Mreda, ≥99%), 2-bromobenzaldehyde (C7H5BrO, Meryer, 98%), 3-bromobenzaldehyde 

(C7H5BrO, Aldrich, 97%), 4-bromobenzaldehyde (C7H5BrO, Aldrich, 99%), 4-

bromotoluene (C7H7Br, Aldrich, 99%), 2-bromotoluene (C7H7Br, Meryer, 99%), 4-

iodotoluene (C7H7I, Aldrich, 99%), 4-bromoanisole (C7H7BrO, Aldrich, 99%), 

potassium carbonate (K2CO3, Aldrich, 99.5%), caesium carbonate (Cs2CO3, Meryer, 

99.9%), sodium hydroxide (NaOH, Kermel, >96%), sodium carbonate (Na2CO3, 

Sinopharm Chemical Reagent Co., Ltd., ≥99.8%), natrium bicarbonate (NaHCO3, 

Sinopharm Chemical Reagent Co., Ltd., ≥99.8%), and triethylamine (C6H15N, Aldrich, 

≥99%). Deionized water with a resistance >18.2 MΩ was obtained from a Millipore 



Milli-Q ultrapure water purification system. Hydrogen (H2, Zhejiang Jinhua Wucheng 

Datong Gas Co., Ltd, 99.999%). Nitrogen (N2, Zhejiang Jinhua Wucheng Datong Gas 

Co., Ltd, 99.999%).

1.2. Characterization

The X-ray powder diffraction (XRD) patterns were obtained on a Philips 

PW3040/60 diffractometer using Cu Kα radiation (λ=0.1541 nm, 40 kV, 30 mA).

N2 adsorption isotherms were measured at -196 °C on a Micromeritics ASAP 2020 

instrument. The samples were outgassed under vacuum at 200 °C for 12 h before 

adsorption measurement. The surface area was determined using the Brunauer-Emmett-

Teller (BET) method.

The morphology of the samples were obtained by field emission SEM on a scanning 

electron microscope (a Hitachi S-4800 microscope) and TEM on a transmission electron 

microscope (JEM2100F, JEOL, Japan) working at 200 kV.

X-ray photoelectron spectroscopy (XPS) data were collected on an ESCALAB250 

electron spectrometer from VG Scientific using 300 W Al-Kα radiation. The XPS data 

were internally calibrated, fixing the binding energy of C 1s at 284.8 eV.

The surface properties of the catalysts were measured by temperature-programmed 

desorption of ammonia (NH3-TPD, a Micro-meristics AutoChem II 2920 instrument). 

The sample (150 mg) was purged under a flow of He of 30 mL/min at 350 °C for 2 h. 

After purging, the sample was cooled to 110 °C, and the feed composition was switched 

to a mixture containing 20% NH3 in He (30 mL/min) for 30 min. The physisorbed 

ammonia was flushed out with He flow for 1 h. Afterward, the sample cell was heated at 



10 °C/min under He to 900 °C. The concentration of the desorbed ammonia was 

monitored continuously with a TCD detector.

The amounts of the metal Pd species in the different samples were determined by an 

IRIS Intrepid II XSP inductively coupled plasma-atomic emission spectrometer (ICP-

AES).

Electron Paramagnetic Resonance (EPR) measurement was obtained on the Bruker EPR 

EMXplus-9.5/12 at room temperature. The frequency and power of the microwave were set 

to 9.847226 GHz and 2.0000 mW, respectively. Gauss field modulation at 100 kHz and a 

time constant of 20 ms was used for detection.

The nuclear magnetic resonance (NMR) spectra of the products were recorded on a 

Bruker Avance 600 MHz spectrometer at 297 K using CDCl3 (δ H=7.26, δ C=77.0) as an 

internal standard for 1H NMR and 125 MHz for 13C NMR.

1.3. Catalyst preparation

Synthesis of Pd@NH2-UiO-66(Hf)

Pd@NH2-UiO-66(Hf) was synthesized by a one-pot strategy according to the 

procedure reported in the previous papers with some slight modification.1 Briefly, HfCl4 

(4.7 mmol) and NH2-BDC (4.7 mmol) were dissolved in DMF (200 mL) in a round-

bottom flask (500 mL in capacity) and then added acetic acid (36 mL), deionized water 

(5.0 mL), and PdCl2 precursor (0.5 mL, 10 mg/mL) to the solution. The mixture was 

treated under ultrasound for 10 min to form a homogeneous solution. Afterward, the 

mixture was heated at 75 °C for 20 h. Subsequently, the temperature was raised to 130 

°C, and the mixture was allowed to stir for another 4 h, and then cooled to room 



temperature. The product was centrifugated at 9000 rpm for 4 min, washed with DMF 

and methanol three times, respectively, and finally dried under vacuum at 120 °C for 12 

h. Other control samples, including Pd@NH2-UiO-66(Zr), NH2-UiO-66(Zr), and NH2-

UiO-66(Hf), were also synthesized by a similar method.

Synthesis of Pd/HfO2@CN

The Pd/HfO2@CN powders were fabricated directly via one-step pyrolysis strategy. 

Typically, the Pd@NH2‐UiO‐66(Hf) precursor (0.1 g) was transferred into a tube furnace. 

The furnace was heated at 600 °C at a rate of 3 °C/min with nitrogen gas flow (flow rate: 100 

ml/min). The furnace was held at this temperature for 3 h and then allowed to cool to room 

temperature. Before use, the obtained powder was further reduced in a stream of hydrogen 

(H2)/N2 (10:40 mL/min) at 250 °C for 4 h. Pd/ZrO2@CN was prepared following the same 

procedure.
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Fig. S1 XRD patterns of simulated UiO-66, the synthesized Pd@NH2-UiO-66(Hf) and 

Pd@NH2-UiO-66(Zr).
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Fig. S2 N2 adsorption–desorption isotherms of NH2-UiO-66(Zr), Pd@NH2-UiO-66(Zr), NH2-

UiO-66(Hf), and Pd@NH2-UiO-66(Hf).



Fig. S3 TEM images of Pd@HfO2 (a and b) and Pd@ZrO2 (c and d).
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Fig. S4 XRD pattern of Pd/HfO2(Im).



Fig. S5 SEM (a), TEM (b), and HRTEM (c) images of Pd/HfO2(Im).



 

In
te

ns
ity

 (a
.u

.)

 

 

10 20 30 40 50 60 70 80

 
Pd@HfO2 (air)

monoclinic HfO2

 

2 Theta (degree)

Fig. S6 XRD pattern of Pd@HfO2(air).
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Fig. S7 N2 adsorption–desorption isotherms of Pd@HfO2(air).



Fig. S8 SEM (a), TEM (b), and HRTEM (c) images of Pd@HfO2(air).
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Fig. S9 XRD patterns of the fresh and used Pd@HfO2 catalyst.

0.0 0.2 0.4 0.6 0.8 1.0

0

40

80
Spent  Pd@HfO2: 15.5 m2/g

 

 

Qu
an

tit
y 

Ad
so

rb
ed

 (c
m

3 /g
 S

TP
)

P/P0

Fig. S10 N2 adsorption isotherms of the spent Pd@HfO2 catalyst.
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Fig. S11 High resolution XPS spectrum of Pd 3d for the spent Pd@HfO2 catalyst.

Fig. S12 TEM (a) and HRTEM (b) images of the spent Pd@HfO2 catalyst.
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Fig. S13 EPR spectra of Pd@HfO2 and Pd/HfO2(Im).

The Pd@HfO2 has more oxygen vacancies in comparison with that of Pd/HfO2(Im), likely 

owning to the strong interaction between HfO2 and Pd formed during the two-step thermal 

treatment, which is beneficial for forming a highly stable catalyst.



Table S1 Suzuki-Miyaura cross-coupling reaction of bromobenzene and arylboronic acids 

using palladium catalysts

Br B(OH)2

Catalyst

K2CO3, EtOH/H2O
R

R

Entry Catalyst R Products
T 

(oC)

Yield 

(%)

1 Pd@HfO2 H 50 >99

2 Pd@NH2-UiO-66(Hf) H 50 50

3 Pd@NH2-UiO-66(Zr) H 50 41

4 Pd/HfO2@CN H 50 85

5 Pd/ZrO2@CN H 50 80

6 Pd@HfO2 4-CH3 80 75

7 Pd@HfO2 4-OCH3 H3CO 80 72

8 Pd@HfO2 2-CH3 80 70

Reaction conditions: bromobenzene (0.32 mmol), arylboronic acid (0.38 mmol), K2CO3 (0.38 

mmol), Ethanol/H2O = 1:1 (4.0 mL), catalyst (0.1 mol%), 2 h.



Table S2 Comparison of catalytic activity for the Suzuki-Miyaura coupling reaction over 

different catalysts.

Entry Catalyst Reaction conditions

Catalyst/solvent/base/temperature/time

Yield 

(%)

Ref.

1 Pd@HfO2 0.1 mol% catalyst/EtOH: H2O 

(1:1)/K2CO3 (1.2 equiv)/50 oC/2 h

>99 This work

2 Pd-Pt

Nanodendrites

4 mg catalyst/EtOH: H2O (1:1)/Cs2CO3 

(1.2 equiv)/80 oC/2 h

98 2

3 Pd@porous 

SiO2

0.003 mol% catalyst/DMF: H2O 

(21:1)/Cs2CO3 (2.0 equiv)/200 oC/1 h

100 3

4 Pd/Porous-

nanorods-CeO2-

160

0.3 mol% catalystDMF: H2O 

(1:1)/K2CO3 (3.0 equiv)/90 oC/1 h

72.3 4

5 Pd@Mesopor

ous Carbon

2 mol% catalyst/EtOH: H2O 

(1:1)/Na2CO3 (2.0 equiv)/80 oC/1 h

98 5

6 Pd@Fluorescent 

Material

0.05 mol% catalyst/H2O/K2CO3 (2.0 

equiv)/80 oC/10 h

91 6

7 Pd-TiO2/Carbon 

Nanofibers

10 mg catalyst/H2O/K2CO3 (2.0 

equiv)/50 oC/5 h

5 7

8 SiO2/(Tetraethyl

ene glycol)/Pd

0.75 mol% catalyst/Toluene/K3PO4 (2.0 

equiv)/110 oC/12 h

86 8

9 Pd/SBA-15 0.2 mol% catalyst/EtOH: H2O 88 9



(1:3)/K2CO3 (3.0 equiv)/85oC/10 h

10 Pd/Pr 

Coordination 

Polymers

0.4 mol% catalyst/DMF: H2O 

(1:1)/K2CO3 (2.0 equiv)/70 oC/3 h

86 10

11 Pd@gel-Fe3O4 1 mol% catalyst/MeOH/Na2CO3 (3.0 

equiv)/60 oC/5 h

89 11

12 Pd/TiO2 0.7 mol% catalyst/NMP: H2O (2.5: 

1)/Na2CO3 (1.5 equiv)/120 oC/4 h

91 12

13 Pd/Fe3O4 NPs 0.2 mol% catalyst/MeOH/K2PO3 (3.0 

equiv)/60 oC/18 h

91 13
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Analytical data of the products
biphenyl

1H NMR (600 MHz, CDCl3) δ=7.89–7.73 (m, 1H), 7.71–7.58 (m, 1H), 7.61–7.40 (m, 1H). 
13C NMR (151 MHz, CDCl3) δ=141.41 (s), 128.96 (s), 128.78 (s), 127.40 (d, J=14.0).

2-biphenylcarboxaldehyde
CHO

1H NMR (600 MHz, CDCl3) δ=10.02 (s, 1H), 8.07 (dd, J=7.8, 1.1, 1H), 7.66 (td, J=7.5, 1.3, 
1H), 7.58–7.44 (m, 5H), 7.44–7.37 (m, 2H). 13C NMR (151 MHz, CDCl3) δ 192.44, 145.99, 
137.77, 133.74, 133.60, 130.82, 130.14, 128.47, 128.16, 127.81, 127.59.

4-biphenylcarboxaldehyde

OHC

1H NMR (600 MHz, CDCl3) δ=10.05 (s, 1H), 7.95 (d, J=8.0, 2H), 7.74 (d, J=8.0, 2H), 7.64 
(d, J=7.5, 2H), 7.47 (dt, J=33.0, 7.3, 3H). 13C NMR (151 MHz, CDCl3) δ=191.98 (s), 147.11 
(s), 139.66 (s), 135.70 (s), 135.23 (s), 132.75 (s), 130.32 (s), 129.10 (s), 128.57 (s), 128.00 (d, 
J=18.7), 127.67 (s), 127.40 (s), 127.18 (s).

4-methoxybiphenyl

H3CO

1H NMR (600 MHz, CDCl3) δ=7.67–7.59 (m, 1H), 7.50 (s, 1H), 7.39 (t, J=7.4, 1H), 7.06 (d, 
J=8.7, 1H), 3.91 (s, 1H). 13C NMR (151 MHz, CDCl3) δ=159.22 (s), 140.89 (s), 133.83 (s), 
128.81 (s), 128.23 (s), 126.78 (d, J=9.9), 114.28 (s), 55.39 (s).

2-phenyltoluene

1H NMR (600 MHz, CDCl3) δ=7.77–7.35 (m, 1H), 2.67–2.48 (m, 1H). 13C NMR (151 MHz, 
CDCl3) δ = 142.21 (t, J=5.7), 135.53 (d, J=2.7), 130.55 (d, J=4.6), 130.05 (d, J=4.6), 129.43 
(d, J=4.4), 128.98 (s), 128.31 (d, J=4.6), 127.50 (d, J=4.7), 127.00 (d, J=4.3), 126.03 (d, 
J=5.0), 20.73 (s).



4-phenyltoluene

1H NMR (600 MHz, CDCl3) δ=7.74 (dd, J=8.3, 1.2, 1H), 7.66 (d, J=8.1, 1H), 7.58 (t, J=7.8, 
1H), 7.48 (s, 1H), 7.40 (d, J=7.9, 1H), 2.55 (s, 2H). 13C NMR (151 MHz, CDCl3) δ=141.32 
(s), 138.51 (s), 137.13 (s), 129.64 (s), 128.87 (s), 128.69 (s), 127.34–127.06 (m), 126.96 (s), 
21.24 (s).

4-nitrobiphenyl

O2N

1H NMR (600 MHz, CDCl3) δ 8.35–8.30 (m, 1H), 7.78–7.74 (m, 1H), 7.67–7.64 (m, 1H), 
7.55–7.45 (m, 2H), 7.28 (s, 1H). 13C NMR (151 MHz, CDCl3) δ 147.66 (s), 138.79 (s), 
129.17 (s), 128.93 (s), 127.82 (s), 127.40 (s), 124.13 (s).



Figs. S14-S19 1H and 13C NMR spectra of coupling products.
Fig. S14 1H and 13C NMR spectra for biphenyl.



Fig. S15 1H and 13C NMR spectra for 2-biphenylcarboxaldehyde.



Fig. S16 1H and 13C NMR spectra for 4-biphenylcarboxaldehyde.



Fig. S17 1H and 13C NMR spectra for 4-methoxybiphenyl.



Fig. S18 1H and 13C NMR spectra for 2-phenyltoluene.



Fig. S19 1H and 13C NMR spectra for 4-phenyltoluene.



Fig. S20 1H and 13C NMR spectra for 4-nitrobiphenyl.



MS spectra
Fig. S21 MS spectra of the biphenyl.

Fig. S22 MS spectra of the 2-biphenylcarboxaldehyde.



Fig. S23 MS spectra of the 3-biphenylcarboxaldehyde.

Fig. S24 MS spectra of the 4-biphenylcarboxaldehyde.



Fig. S25 MS spectra of the 4-methoxybiphenyl.

 
Fig. S26 MS spectra of the 4-phenyltoluene.



Fig. S27 MS spectra of the 2-phenyltoluene.

Fig. S28 MS spectra of the 4-nitrobiphenyl.


