Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Information

Synthesis of green magnetic biopolymer derived from *Oak fruit* hull tannin for efficient simultaneous adsorption of a mixture of Malachite Green and

Sunset Yellow dyes from aqueous solutions

Negar Sadegh ^a, Hedayat Haddadi ^{*a}, Arash Asfaram ^{†b}

^a Department of Chemistry, Faculty of Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran

^b Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran

^{*}Corresponding authors: E-mail address: haddadi@sci.sku.ac.ir (H. Haddadi) arash.asfaram@yums.ac.ir (A. Asfaram)

Fig. S1. Alkaline auto condensation (a) 1 and probable flavonoid unit in a condensed tannin (b). 2

(1) Hydroxy methylation:

Fig. S2. Probable generic gelification mechanism between condensed tannin and formaldehyde. ^{2, 3}

Fig. S3. Vibration sample magnetometry (VSM) data of Fe_3O_4 -OT recorded at room temperature.

Fig. S4. Nitrogen adsorption and desorption diagram (a) and BJH diagram (b) for Fe₃O₄-OT adsorbent.

Fig. S5. The removal efficiency of MG and SY at 16 mg L^{-1} initial concentration on Fe₃O₄-OT in different cycles.

Tables

Table S1. Physical properties and molecular structure of MG and SY.

Name of the commercial dye	Malachita Croon (MC)	Sunsat Vallow (SV)
Name of the commercial uye	Malacinte Green (MG)	Sunset Tenow (ST)
Colour Index Name	Aniline green	Orange-yellow
λmax (nm)	617	480
Molecular Weight (g mol ⁻¹)	364.911	452.400
Charge	(+)	(-)
Chemical Formula	C ₂₃ H ₂₅ N ₂	$C_{16}H_{10}N_2Na_2O_7S_2$

Band (cm ⁻¹)	Functional group
3400	-OH stretching
2900	C–H stretching vibrations in methylene (-CH ₂ -)
2800	C-H stretching vibrations in methyl and methylene groups
1720	-C=O stretching vibrations
1627	C=C stretching in the aromatic ring
1450, 1500 and 1616	C–C skeletal vibrations
1100 and 1380	C–O stretching vibrations
1205	C–O–C symmetric stretch
1035	C–O ethers stretching
620 to 823	C–H deformation vibrations in the aromatic ring
455 and 764	=C–H bending vibrations
524	CCO and CCC ring deformation
578	Fe-O stretching vibrations of Fe ²⁺ and Fe ³⁺

Table S2. Assignment of groups in the FTIR spectrum of the Fe₃O₄-OT.

Source of variation	DF	R% MG			D	F	R% SY				
		Sum of squares	Mean of squares	F-value	P-value			Sum of squares	Mean of squares	F-value	P-value
Model	20	370.3	18.52	23.22	< 0.0001	20)	3321.8	221.5	41.79	< 0.0001
X ₁	1	0.442	0.442	0.554	0.4723	1		953.0	953	179.9	< 0.0001
X ₂	1	128.4	128.4	161.11	< 0.0001	1		91.31	91.31	17.23	0.0022
X ₃	1	16.21	16.21	20.33	0.0009	1		142.5	142.5	26.88	0.0004
X4	1	30.46	30.46	38.21	< 0.0001	1		235.4	235.4	44.42	< 0.0001
X ₅	1	4.00	4.00	5.02	0.0467	1		243.4	243.4	45.92	< 0.0001
X_1X_2	1	15.79	15.79	19.81	0.0010	1		41.89	41.9	7.91	0.0211
X ₁ X ₃	1	3.73	3.73	4.68	0.0535	1		190.9	190.9	36.02	< 0.0001
X_1X_4	1	20.18	20.18	25.31	0.0004	1		20.14	20.14	3.80	0.0893
X ₁ X ₅	1	7.50	7.50	9.41	0.0107	1		307.8	307.8	58.09	< 0.0001
X ₂ X ₃	1	0.505	0.505	0.633	0.4431	1		16.38	16.38	3.09	0.01211
X ₂ X ₄	1	0.105	0.105	0.132	0.7231	1		275.8	275.8	52.04	< 0.0001
X_2X_5	1	15.37	15.37	19.28	0.0011	1		119.5	119.5	22.56	0.0008
X ₃ X ₄	1	0.393	0.393	0.493	0.4972	1		181.3	181.3	34.22	0.0002
X ₃ X ₅	1	2.25	2.25	2.82	0.1214	1		381.0	381.0	71.90	< 0.0001
X_4X_5	1	17.57	17.57	22.03	0.0007	1		121.6	121.6	22.95	0.0008
X_{1}^{2}	1	1.67	1.67	2.09	0.1758	1		12.98	12.98	2.24	0.1629
X_{2}^{2}	1	81.8	81.8	102.6	< 0.0001	1		7.08	7.08	1.22	0.2928
X_3^2	1	24.4	24.4	30.58	0.0002	1		0.245	0.245	0.042	0.8410
X_4^2	1	4.34	4.34	5.44	0.0397	1		0.205	0.205	0.035	0.8545
X_{5}^{2}	1	3.68	3.68	4.62	0.0547	1		1.34	1.34	0.231	0.6403
Residual	11	8.77	0.797			11	l	63.81	5.80		
Lack of Fit	6	5.91	0.985	1.72	0.284	6		26.63	4.44	0.597	0.727
Pure Error	5	2.86	0.573			5		37.17	7.43		
Corr. Total	31	379.1				3	1	3406.6			

Table S3. Variance analysis for response surface quadratic model for adsorption efficiency (%) of MG and SY onto Fe₃O₄-OT.

Isotherm	Plot	Parameters	MG	SY		
Langmuir		$Q_m (mg g^{-1})$	49.00	53.96		
$\underline{C_e} = \underline{l} + \underline{C_e}$	C_e/q_e vs. C_e	$K_L (L mg^{-1})$	3.496	1.903		
$q_e Q_m k_L Q_m$		R ²	0.997	0.993		
		$R_{L}=1/(1+(K_{L}\times C_{0}))$	0.009-0.054	0.017-0.095		
Freundlich	In a vs. In C	1/n	0.162	0.311		
$lnq_e = lnK_F + \frac{l}{n}lnC_e$	$in q_e vs. in C_e$	$K_{\rm F}$ (L mg ⁻¹)	4.597	4.345		
		R ²	0.967	0.929		
Temkin	q_e vs. ln C_e	\mathbf{B}_1	4.240	8.903		
$q_e = B_l \ln K_T + B_l \ln C_e$		$K_T(L mg^{-1})$	1.00	1.00		
		R ²	0.892	0.968		
Dubinin-Radushkevich		$Q_s (mg g^{-1})$	38.88	44.36		
$ln q_e = ln Q_s - k\varepsilon^2$	$ln q_e vs. \varepsilon^2$	β	-4.3E ⁻⁰⁹	-3.7E ⁻⁰⁸		
		E (kJ mol ⁻¹)	10.763	3.682		
		R ²	0.785	0.930		

Table S4. Adsorption parameter of isotherm for the adsorption of MG and SY onto Fe₃O₄-OT (volume, 50 mL; adsorbent dose, 20 mg; contact time, 20 min; temperature, 25 °C; pH, 6.5).

Table S5. kinetic parameters for MG and SY dyes adsorption onto Fe_3O_4 -OT (volume, 50 mL; initial concentration for each dye, 16 mg L⁻¹; adsorbent dose, 20 mg; temperature, 25 °C; pH, 6.5).

Model	Plot	Parameters	MG	SY
First-order- kinetic		$k_1(\min^{-1})$	0.103	0.116
$\ln(q_e-q_t)=\ln q_e-k_1t$	$ln (q_e - q_t)$ vs. t	$q_{e (calc)} (mg g^{-1})$	33.64	28.89
		R ²	0.948	0.977
Pseudo-second-order-		$k_2(\min^{-1})$	0.002	0.004
kinetic	t/q_t vs. t	$q_{e(calc)}(mgg^{-1})$	48.51	45.44
t 1 t	_	R ²	0.991	0.996
$\frac{1}{q_t} = \frac{1}{k_2 q_{e^2}} + \frac{1}{q_e}$		h (mg g ⁻¹ min ⁻¹)	6.503	9.734
Intraparticle diffusion		$K_{diff,}$ (mg g ⁻¹ min ^{-1/2})	5.435	4.274
$q_t = k_{diff} t^{1/2} + C$	$q_t vs. t^{1/2}$	C (mg g ⁻¹)	9.643	16.44
1		R ²	0.943	0.933
Elovich		β (g mg ⁻¹)	0.094	0.120
$q_t = \frac{1}{\alpha} \ln(t) + \frac{1}{\alpha} \ln(\alpha\beta)$	q_t vs. ln t	$\alpha (\mathrm{mg} \ \mathrm{g}^{-1} \ \mathrm{min}^{-1})$	14.37	32.69
β β		R ²	0.971	0.966
Experimental data		$q_{e(exp)}$ (mg g ⁻¹)	39.21	39.53

Table S6. Thermodynamic parameters for the adsorption of MG and SY onto magnetic Fe_3O_4 -OT (volume: 50 mL; initial dye concentration for each dye: 16 mg L⁻¹; adsorbent dose: 20 mg; contact time: 20 min; pH: 6.5).

	MC	3	SY		
T(k)	k _C	ΔG°(kJ mol ⁻¹)	k _C	ΔG°(kJ mol ⁻¹)	
288	6.98	-4.65	10.53	-5.64	
298	15.24	-6.75	22.91	-7.76	
308	16.88	-7.24	26.54	-8.40	
318	36.78	-9.53	53.32	-10.51	
R ²	0.93	33		0.948	
ΔS°(j mol ⁻¹ k ⁻¹)	151	.0	152.7		
ΔH°(kj mol ⁻¹)	38.7	/2	38.19		

References

- 1. A. Arbenz and L. Avérous, Green Chem. 2015, 17, 2626-2646.
- J. Beltrán-Heredia, P. Palo, J. Sánchez-Martín, J. R. Domínguez and T. González, *Ind. Eng. Chem. Res.*, 2012, 51, 50-57.
- J. Sánchez-Martín, J. Beltrán-Heredia and C. Carmona-Murillo, *Ind. Crops Prod.*, 2011, 33, 409-417.