Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Tunable 1,2,3-triazole-N-Oxides towards high energy density materials: theoretical insight into

structure-property correlations

Yue Liu¹, Lishan Gong¹, Xiaoyi Yi¹, Piao He^{1*}, Jianguo Zhang²

¹ College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China

² State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 P. R. China

Table of Contents

- 1. Optimized parameters
- 2. HOMO-LUMO orbitals and energy gap
- 3. Molecular electrostatic potential (ESP)
- 4. Thermodynamic parameters
- 5. Detonation parameters
- 6. References

1. Optimized parameters

Figure S1 Optimized geometry of A series

^{*}Corresponding authors: Piao He, E-mail: piaohe@csu.edu.cn

Figure S2 Optimized geometry of H series

Figure S3 Optimized geometry of NA series

Figure S4 Optimized geometry of N series

Figure S5 Optimized geometry of DN series

Figure S6 Optimized geometry of TN series

2. HOMO-LUMO orbitals and energy gap

Figure S7 HOMO-LUMO energy and HOMO-LUMO gap of H series

Figure S8 HOMO-LUMO energy and HOMO-LUMO gap of A series

Figure S9 HOMO-LUMO energy and HOMO-LUMO gap of NA series

Figure S10 HOMO-LUMO energy and HOMO-LUMO gap of N series

Figure S11 HOMO-LUMO energy and HOMO-LUMO gap of DN series

Figure S12 HOMO-LUMO energy and HOMO-LUMO gap of TN series

3. Molecular electrostatic potential (ESP)

Figure S13 Molecular electrostatic potential of -NHNH₂(H) series ranging from -0.03 a.u.(blue) to 0.03 a.u.(red),

isosurface=0.001

Figure S14 Molecular electrostatic potential of -NH₂(A) series ranging from -0.03 a.u.(blue) to 0.03 a.u.(red),

isosurface=0.001

Figure S15 Molecular electrostatic potential of -NO₂(N) series ranging from -0.03 a.u.(blue) to 0.03 a.u.(red),

isosurface=0.001

Figure S16 Molecular electrostatic potential of -NHNO₂(NA) series ranging from -0.03 a.u.(blue) to 0.03 a.u.(red),

isosurface=0.001

Figure S17 Molecular electrostatic potential of $-C(NO_2)_2$ (DN) series ranging from -0.03 a.u.(blue) to 0.03 a.u.(red), isosurface=0.001

Figure S18 Molecular electrostatic potential of -C(NO₂)₃ (TN) series ranging from -0.03 a.u.(blue) to 0.03

a.u.(red), isosurface=0.001

4. Thermodynamic parameters

No.	Formula	E ₀ (a.u.)	$\mathbf{H}_{\mathbf{T}}$	$HOF_{(g,0K)}$ $HOF_{(g,298K)}$		HOF _(c,298K)	
	Formula	6-311G(d,p)	(a.u.)	(kJ/mol)	(kJ/mol)	(kJ/mol)	
A1	$C_4H_6N_8O_2$	-744.3836	0.0121	556.58	515.31	407.13	
A2	$C_4H_6N_{10}O_2$	-853.8553	0.0159	777.03	737.05	609.78	
A3	$C_4H_7N_9O_2$	-799.7129	0.0154	643.38	602.22	480.74	
A4	$C_4H_8N_{10}O_2$	-855.0447	0.0140	723.37	670.04	548.65	
A5	$C_4H_8N_8O_2$	-783.6766	0.0133	563.86	516.30	401.28	
A6	$C_6H_6N_{12}O_2$	-1039.5681	0.0176	1030.74	984.59	847.35	
A7	$C_{7}H_{8}N_{10}O_{2}$	-969.4000	0.0180	789.61	743.49	597.12	
A8	$C_{6}H_{6}N_{10}O_{3}$	-1005.3304	0.0178	667.02	625.67	487.56	
H1	$C_4H_6N_{10}O_2$	-1153.4359	0.0174	693.33	648.38	527.47	
H2	$C_4H_6N_{12}O_2$	-1262.8989	0.0204	936.72	891.02	753.75	
Н3	$C_4H_9N_{11}O_2$	-1208.7895	0.0188	716.29	666.57	531.21	
H4	$C_4H_{10}N_{12}O_2$	-1264.1121	0.0195	820.53	764.02	620.97	
Н5	$C_5H_6N_{10}O_2$	-1192.7469	0.0183	653.29	601.25	468.40	
H6	$C_{6}H_{8}N_{14}O_{2}$	-1448.6179	0.0216	1174.01	1120.58	971.04	
H7	$C_7 H_{10} N_{12} O_2$	-1378.4630	0.0225	898.25	846.48	686.23	
H8	$C_{6}H_{8}N_{12}O_{3}$	-1414.3777	0.0223	816.92	769.60	616.58	
N1	$C_4H_2N_8O_6$	-1042.7257	0.0146	655.74	620.66	520.77	
N2	$C_4H_2N_{10}O_6$	-1152.1600	0.0181	974.29	939.62	808.31	
N3	$C_4H_3N_9O_6$	-1098.0263	0.0175	817.55	781.46	657.05	
N4	$C_4H_4N_{10}O_6$	-1153.3958	0.0168	798.51	752.09	634.49	
N5	$C_5H_4N_8O_6$	-1082.0204	0.0168	658.47	619.55	493.11	
N6	$C_{6}H_{2}N_{12}O_{6}$	-1337.8724	0.0196	1228.76	1187.26	1041.45	
N7	$C_{7}H_{4}N_{10}O_{6}$	-1267.7344	0.0200	908.88	867.70	710.86	
N8	$C_{6}H_{2}N_{10}O_{7}$	-1303.6514	0.0189	821.32	782.35	640.72	

Table. S1 48 substituted 1,2,3-triazole-N-oxides, their sum of electronic and zero-point energy (E_0), thermal correction from 0K to 298K (H_T), gas-phase heat of formation under 0K ($HOF_{(g,0K)}$), gas-phase heat of formation under 298K ($HOF_{(g,298K)}$), condensed-phase heat of formation under 298K ($HOF_{(c,298K)}$), compared with HMX and RDX.

NA6	$C_6H_4N_{14}O_6$	-1448.5791	0.0216	1275.71	1222.28	1062.66
NA6	$C_{6}H_{4}N_{14}O_{6}$	-1448.5791	0.0216	1275.71	1222.28	1062.66
NA7	$C_7H_6N_{12}O_6$	-1378.4245	0.0225	999.41	947.64	776.84
NA8	$C_{6}H_{4}N_{12}O_{7}$	-1414.3378	0.0223	921.55	874.23	706.55
DN1	$C_6H_2N_{10}O_{10}$	-1529.0888	0.0231	1085.80	1044.72	905.36
DN2	$C_{6}H_{2}N_{12}O_{10}$	-1638.5073	0.0239	1445.58	1397.89	1246.01
DN3	$C_6H_3N_{11}O_{10}$	-1584.4582	0.0248	1067.12	1022.09	854.93
DN4	$C_{6}H_{4}N_{12}O_{10}$	-1639.8157	0.0260	1079.75	1029.21	850.16
DN5	$C_7H_4N_{10}O_{10}$	-1568.3879	0.0253	1076.93	1032.23	872.36
DN6	$C_8H_2N_{14}O_{10}$	-1824.2383	0.0269	1651.52	1600.90	1399.51
DN7	$C_9H_4N_{12}O_{10}$	-1754.1045	0.0279	1320.59	1272.03	1064.54
DN8	$C_8H_2N_{12}O_{11}$	-1790.0139	0.0278	1253.03	1209.27	993.13
TN1	$C_4H_2N_8O_6$	-1939.4254	0.0293	919.72	868.90	702.26
TN2	$C_4H_2N_{10}O_6$	-2048.8958	0.0308	1143.63	1088.15	901.14
TN3	$C_4H_3N_9O_6$	-1994.7749	0.0302	953.40	896.34	722.76
TN4	$C_4H_4N_{10}O_6$	-2050.1105	0.0307	1023.38	959.12	777.53
TN5	$C_5H_4N_8O_6$	-1978.7337	0.0295	886.84	827.18	659.67
TN6	$C_{6}H_{2}N_{12}O_{6}$	-2234.6024	0.0328	1413.49	1352.40	1131.52
TN7	$C_{7}H_{4}N_{10}O_{6}$	-2164.4533	0.0334	1122.38	1062.07	829.69
TN8	$C_{6}H_{2}N_{10}O_{7}$	-2200.3644	0.0332	1050.46	994.70	771.95
RDX	$C_3H_6N_6O_6$				192.00	79.00 ¹
TINAN	СНМО					102 411

No.	ρ	OB	Q	D	Р	ΔV_{Truazl}	h50
	(g/cm ³)	(%)	(kcal/g)	(km/s)	(GPa)	(cm ³)	(cm)
A1	1.73	-72.73	1.13	6.69	19.34	240.99	103.94
A2	1.74	-63.72	1.20	6.66	19.26	272.96	58.47
A3	1.71	-71.36	1.16	6.80	19.92	253.64	105.69
A4	1.75	-70.18	1.18	7.02	21.46	263.03	107.24
A5	1.67	-90.57	1.10	6.64	18.64	205.22	268.83
A6	1.74	-74.82	1.18	6.20	16.71	236.80	64.78
A7	1.71	-96.97	1.06	6.27	16.92	170.35	221.75
A8	1.75	-72.18	1.09	7.31	23.29	223.29	78.19
H1	1.67	-70.18	1.15	8.58	31.20	257.07	107.24
H2	1.68	-62.50	1.24	9.08	35.03	289.46	64.31
Н3	1.69	-69.14	1.11	8.61	31.59	248.74	108.61
H4	1.67	-68.22	1.15	8.71	32.22	262.75	109.84
Н5	1.64	-85.95	1.07	7.96	26.53	210.70	246.10
H6	1.68	-72.73	1.20	8.95	34.11	249.81	69.42
H7	1.67	-92.52	1.06	8.00	27.15	183.22	210.29
H8	1.71	-70.27	1.12	8.51	31.13	239.36	82.44
N1	1.85	-18.60	1.62	8.84	35.28	469.50	92.37
N2	1.85	-16.78	1.70	9.03	36.83	491.45	59.30
N3	1.95	-20.51	1.67	9.34	40.56	481.57	94.17
N4	1.86	-22.22	1.58	8.95	36.26	457.03	95.81
N5	1.84	-35.29	1.55	8.60	33.24	424.80	194.75
N6	1.85	-33.14	1.60	8.63	33.58	427.35	64.35
N7	1.86	-49.38	1.46	8.29	31.10	365.59	175.23
N8	1.88	-29.45	1.51	8.60	33.69	415.26	75.02
NA1	1.82	-22.22	1.57	8.78	34.41	452.87	95.81

Table. S2 48 substituted 1,2,3-triazole derivatives, their predicted values of density ρ , oxygen balance OB(based on CO₂), detonation energy Q, detonation velocity D, detonation pressure P, and ΔV_{Truazl} , predicted values of impact sensitivities. h50, compared with HMX, CL-20 and RDX.

NA2	1.85	-20.25	1.59	8.97	36.28	459.65	63.95
NA3	1.82	-23.76	1.50	8.86	35.39	434.20	97.31
NA4	1.82	-25.16	1.53	8.84	34.84	441.08	98.70
NA5	1.77	-37.09	1.48	8.40	31.01	406.25	187.26
NA6	1.82	-34.78	1.52	8.51	32.36	404.91	68.20
NA7	1.79	-49.72	1.41	8.12	29.16	355.61	170.98
NA8	1.85	-31.46	1.46	8.55	32.96	401.12	78.64
DN1	1.87	-12.83	1.86	9.21	38.45	548.60	43.11
DN2	1.92	-11.94	1.94	9.59	42.32	567.17	33.17
DN3	1.90	-14.40	1.78	9.25	39.16	523.25	45.01
DN4	1.88	-15.84	1.72	9.29	39.35	507.02	46.83
DN5	1.88	-24.74	1.80	9.10	37.72	513.52	74.77
DN6	1.89	-24.67	1.80	9.05	37.39	499.52	37.68
DN7	1.88	-36.36	1.70	8.74	34.74	455.70	77.46
DN8	1.85	-21.72	1.73	8.95	36.60	491.75	41.58
TN1	1.92	3.43	1.80	9.63	42.80	565.65	20.51
TN2	1.92	3.24	1.79	9.64	42.77	561.41	17.28
TN3	1.93	1.66	1.76	9.65	43.02	554.07	21.73
TN4	1.93	0.00	1.75	9.69	43.43	547.62	22.95
TN5	1.89	-6.67	1.74	9.27	39.26	535.52	32.71
TN6	1.91	-8.79	1.72	9.21	38.91	514.73	20.44
TN7	1.90	-18.05	1.65	9.01	37.17	482.88	36.52
TN8	1.92	-5.99	1.69	9.22	39.17	514.26	21.88
						465.00 ²	
RDX	1.80	-21.62	1.50	8.75	34.70	475.00 ²	37.5
						480.00 ²	
НМХ	1.90	-21.62	1.498	9.10	39.30	450.00 ²	37.0
CL-20	2.04	-10.93	1.36	9.46	46.7	372.39	13.00

6. References

- 1. J. S. P. Politzer; Murray, Central European Journal of Energetic Materials, 2011, 209-220.
- 2. M. K. Kamalvand, M. H.; Jafari, M., Propellants, Explosives, Pyrotechnics, 2015, 40, 551-557.