Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

$Construction \ of \ Multidimensional \ CdS@MoS_2 \ Heterojunction \ for$

Enhanced Solar-to-hydrogen Conversion Performance

Wenxuan Ma,[†] Chenggong Zhang,[†] Shuhua Hao, Yupeng Xing, Gang Zhao,^{*} Shipeng Qiu, Changwen Zhang,^{*} Xiaoke Wang

School of Physics and Technology, University of Jinan, Jinan 250022, P. R. China

* Corresponding address: sps_zhaog@ujn.edu.cn; <u>zhchwsd163@163.com;</u>

†These authors contributed equally to this work.

Figure S1. XRD spectra of CdS@MoS2 composites before and after cycling

Figure S2. Photocatalytic performance test of different catalysts

Figure S3. Photocatalytic cycle test of CdS@Pt

Table S1

Comparison and summary of recent literature reports on the hydrogen evolution performance.

Samples	Light source	Catalyst	Optical	Solution	Materials	HER rate (µ
		Mass mg	property		loading	1)
MoS ₂ /CdS/N-RGO	Xe lamp (150W)	30	400-600 nm	10 vol% lactic acid	/	5266
CdS/MoS ₂	Xe lamp (300W)	200	400-700 nm	10 vol% lactic acid	/	498
	110 minp (200 ii)	200			,	190
	>420 nm					
CdS/MoS ₂	Xe lamp (300W)	20	200-800 nm	20 vol% lactic acid	/	957
	>400 nm					
CdS/Graphene	Xe lamp (350W)	50	200-800 nm	10 vol% lactic acid	1.0 wt% Pt	189
	>400 nm					
	>400 IIII					

- K. Zhang, W. J Kim, M. Ma, X. J. Shia, J. H. Park, Tuning the charge transfer route by p-n junction catalysts embedded with CdS nanorods for simultaneous efficient hydrogen and oxygen evolution, J. Mater. Chem. A 3 (2015) 4803-4810. <u>https://doi.org/10.1039/C4TA05571C.</u>
- [2] X. L. Yin, L. L. Li, W. J. Jiang, Y. Zhang, X. Zhang, L. J. Wan, J. S. Hu, MoS₂/CdS Nanosheets-on-Nanorod Heterostructure for Highly Efficient Photocatalytic H₂ Generation under Visible Light Irradiation, ACS Appl. Mater. Interfaces 8 (2016) 15258-15266. https://doi.org/10.1021/acsami.6b02687.
- [3] J. He, L. Chen, F. Wang, Y. Liu, P. Chen, C. T. Au, S. F. Yin, CdS Nanowires Decorated with Ultrathin MoS₂ Nanosheets as an Efficient Photocatalyst for Hydrogen Evolution, ChemSusChem 9 (2016) 624-630. <u>https://doi.org/10.1002/cssc.201501544.</u>
- [4] Y. Xia, B. Cheng, J. Fan, J. Yu, G. Liu, Unraveling Photoexcited Charge Transfer Pathway and Process of CdS/Graphene Nanoribbon Composites Toward Visible-Light Photocatalytic Hydrogen Evolution, Small 15 (2019) e1902459. <u>https://doi.org/10.1002/smll.201902459</u>.
- [5] T. M. Di, B. Cheng, W. K. Ho, J. G. Yu, H. Tang, Hierarchically CdS-Ag₂S nanocomposites for efficient photocatalytic H₂ production, Appl. Surf. Sci. 470 (2019) 196-204. https://doi.org/10.1016/j.apsusc.2018.11.010.
- [6] S. Ma, J. Xie, J. Q. Wen, K. L. He, X. Li, W. Liu, X. C. Zhang, Constructing 2D layered hybrid CdS nanosheets/MoS₂ heterojunctions for enhanced visible-light photocatalytic H₂ generation, Appl. Surf. Sci. 391 (2017) 580-591. http://dx.doi.org/10.1016/j.apsusc.2016.07.067.
- [7] F. J. Zhang, X. Li, X. Y. Sun, C. Kong, W. J. Xie, Z. Li, J. Liu, Surface partially oxidized MoS₂ nanosheets as a higher efficient cocatalyst for photocatalytic hydrogen production, Appl. Surf. Sci. 487 (2019) 734-742. <u>https://doi.org/10.1016/j.apsusc.2019.04.258</u>.

- [8] H. F. Lin, Y. Y. Li, H. Y. Li, X. Wang, Multi-node CdS hetero-nanowires grown with defect-rich oxygen-doped MoS₂ ultrathin nanosheets for efficient visiblelight photocatalytic H₂ evolution, Nano Res. 10 (2017) 1377-1392. <u>https://doi.org/10.1007/s12274-017-1497-3</u>.
- [9] Q. Q. Liu, J. Y. Shen, X. H. Yu, X. F. Yang, W. Liu, J. Yang, H. Tang, H. Xu, H. M. Li, Y. Y. Li, J. S. Xu, Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)-Codoped and exfoliated ultrathin g-C₃N₄ nanosheets, Appl. Catal. B-Environ. 248 (2019) 84-94. https://doi.org/10.1016/j.apcatb.2019.02.020.