SUPPORTING INFORMATION

μ-Oxo-Bridged Iron(III) Complexes for Selective Reduction of Aromatic Ketones Catalyzed through Base Promoted *In-situ* Nanoparticles Formation

Nidhi Tyagi,*^{a,d} Mambattakkara Viji,^{a,b} Danaboyina Ramaiah*^{a,c}

^aPhotosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum – 695019, India. ^bAcademy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus. ^cDepartment of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, India. ^dInstitute of Nano Science and Technology, Knowledge City, Sector 81, Mohali-160062, Punjab (India),

S. No.	Contents	Page
1	Figure S1 shows ESI-MS spectra of the ligands L_1 and L_2	S2
2	Figure S2 shows IR spectra of the complexes 1 and 2	S3
3	Figure S3 shows the Raman spectra of the complexes 1 and 2	S3
4	Figure S4 shows MALDI-TOF mass spectra of the complexes 1 and 2	S4
5	Figure S5 shows absorption spectral details of the complexes 1 and 2	S5
6	Figure S6 shows cyclic voltammograms of the complexes 1 and 2	S6
7	Figure S7 shows GC-MS spectra of selected alcohol products obtained	S7-S8
	in presence of the complex 1 (2 mol%) with KOH and <i>i</i> -PrOH	
8	Figure S8 shows GC-MS spectra of selected alcohol products obtained	S9-S10
	in presence of the complex 2 (2 mol%) with NaOH and <i>i</i> -PrOH	
9	Figure S9 shows ¹ H NMR spectra of representative alcohols	S10-S12
10	Figure S10 shows FESEM images of the complexes 1 and 2 in NaOH, i-	S13-S14
	PrOH and under catalytic conditions	
	Figure S11 shows time dependent DLS studies	S15
11	Figure S12 shows energy dispersive X-ray (EDX) analysis of the	S16
	complex 2 in presence of base	
12	Figure S13 shows FESEM image of iron oxide	S16
13	Figure S14 shows recyclability of the catalysts (1 and 2) using	S17
	acetophenone as a substrate	
14	Figure S15 shows UV-Visible spectra of the complex 1 in presence of	S18
	base using solvent i-PrOH and ATR-IR spectra of the catalytic reaction	
	mixture	
15	Table S1shows X-ray crystal structure refinement data of the complex 1	S19
16	Table S2 shows TH of various aromatic ketones using KOH	S20

Figure S1. ESI-MS mass spectra of the ligands A) L_1 and B) L_2 .

Figure S2. IR spectra of the complexes 1 and 2 were recorded using KBr pellet.

Figure S3. The Raman spectra of the complexes 1 (top) and 2 (bottom).

B)

Figure S4. MALDI-TOF mass spectra of the complexes A) 1 and B) 2.

Figure S5. UV-visible spectra of the complexes (A) 1, ($[c] = 1.7 \times 10^{-5} \text{ M}$) and (B) 2, ($[c] = 2.0 \times 10^{-5}$) in different solvents. (C, D) UV-Visible spectra of complexes 1 and 2 at temperature 25°C and 80 °C (in MeOH). (E) Time dependent UV-Visible study of complex 1 at 80 °C (in MeOH) monitored for 4 h with 15 min interval.

Figure S6. Cyclic voltammograms of a 10^{-3} M solution of **1** and **2** in DMF, in presence of 0.1 M tetrabutylammonium perchlorate (TBAP), using working electrode: glassy-carbon (0.07 cm²); reference electrode: Ag/AgCl; auxiliary electrode: platinum wire, scan rate 75 mV/s.

Figure S7. GC-MS spectra (A-H) of selected alcohol products obtained from the transformation of the corresponding ketones in presence of the complex 1 (2 mol%) with KOH and *i*-PrOH.

S9

Figure S8. GC-MS spectra (A-H) of selected alcohol products obtained from the transformation of the corresponding ketones in presence of the complex 2 (2 mol%) with NaOH and *i*-PrOH.

S11

Figure S9. ¹H NMR spectra of few selected alcohols A) 1-phenylethanol B) 1-(4-chlorophenyl)ethanol C) (4-bromophenyl)(phenyl)methanol D) diphenylmethanol in CD_3CN .

Figure S10. FESEM images of the A, B) complexes 1 and 2 in *i*-PrOH respectively. C, D) complex 1 and 2 + base in *i*-PrOH.

Figure S11. Time dependent DLS studies of catalytic mixture of complex 1 in *i*-PrOH after every 2 h interval.

Figure S12. Energy dispersive X-ray (EDX) analysis showing the presence of iron and other elements (inset) in catalytic mixture, in presence of complex **2**. (Presence of gold and palladium is due to Au/Pd coating to sample using Quorum Q150T sputter unit)

Figure S13. FESEM image of the iron oxide alone.

Figure S14. A) Recyclability of the catalysts (1 and 2) using acetophenone as a substrate. B, C) FESEM image and IR spectrum of catalytic mixture after 4th cycle, using complex 1.

Figure S15. A) UV-Visible spectra of the complex 1 in *i*-PrOH (black, $[C_{complex 1} = 40 \ \mu M]$ in presence of base (red, $[C_{base}] = 40 \ mM$) B) ATR-IR spectra of complex 1 in DCM and *i*-PrOH, C) ATR-IR spectra of catalytic reaction mixture in presence of complex 1 at time t = 1 h and 12 h (benzophenone (0.1 mmol), base (0.2 mM) in 2-propanol (1 mL) and catalyst (2 mol%), respectively.

Formula weight (gmol ⁻¹)	1950.94	β(°)	68.4270(10)
Crystal system	Triclinic	γ(°)	66.3200(10)
Space group	Ρī	V (Å ³)	2391.33(15)
λ (Å) (Mo- K_{α})	0.71073	Z	1
Crystal size (mm)	0.25x0.15x0.10	θ range (deg)	1.4-26.5
a (Å)	13.4221(5)	F (000)	1025
b (Å)	13.5676(5)	$R_1^{[a]}[I > 2\sigma(I)]$	0.0469
c (Å)	15.5152(5)	$wR_{2}^{[b]}[I > 2\sigma(I)]$	0.1301
α (°)	86.9640(10)	GOF	1.089

 Table S1. X-ray crystal structure refinement data of the complex 1.

[a] $R_1 = (\Sigma ||F_o| - |F_c||)/(|F_o|)$, [b] $wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$

Si.No	Substrate	Complex 1	Complex 2
		Conversion yield (%) ^[b]	Conversion yield (%) ^[b]
		(TOF, h^{-1})	(TOF, h^{-1})
1	0	92	90
	CH ₃	(3.83)	(3.75)
2	O A H F	100	88
	F	(4.16)	(3.67)
3		98	100
	CI CH ₃	(4.08)	(4.16)
4	0	100	51
		(4.16)	(2.13)
5	S	89	94
		(3.71)	(3.92)
6		87	79
	ΟŬ	(3.63)	(3.29)
7		30	12
	H ₃ C	(1.25)	(50)
8	0	5	47
	H ₃ CO H ₃ CO CH ₃	(0.21)	(1.95)
0	OCH ₃		10
9		41	40
		(1.70)	(1.00)
10	0 	44	13
	H ₃ CO CH ₃	(1.83)	(0.54)
11	O U	15	9
	H ₃ C CH ₃	(0.63)	(0.38)

Table S2. Complexes 1 and 2 catalyzed TH of various aromatic ketones using KOH.^[a, b]

^[a]Data represent the mean (SD \pm 1%) of three independent experiments. Reaction conditions: acetophenone (0.1 mM), complexes **1** or **2** (2 mol%), base (KOH, 0.2 mM), solvent (*i*-PrOH, 1 mL), temperature (80-85 °C), time 12 h, argon atmosphere. ^[b]Conversions determined by GC-MS analysis. TOF = TON/time in h, and TON was calculated using moles of catalyst.