Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information For:

A sulfonic acid functionalized zirconium-based metal organic framework for the selective detection of copper(II) ion

Abhijeet Rana,^a Soutick Nandi^{ab} and Shyam Biswas^a*

^a Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India.

^b Department of Applied Science, Ghani Khan Choudhury Institute of Engineering & Technology, Malda, 732141 West Bengal, India.

* Corresponding author. Tel: +91-3612583309, Fax: +91-3612582349.

E-mail address: sbiswas@iitg.ac.in

Materials and General Methods:

All the reagents and solvents were purchased from commercial sources and used without purification, except the H₂BPDC-(SO₃H)₂ ligand which was synthesized by following a reported literature.¹ The Attenuated Total Reflectance Infrared (ATR-IR) spectra were recorded using PerkinElmer UATR Two at ambient condition in the region 400-4000 cm⁻¹. The notations used for characterization of the bands are broad (br), strong (s), very strong (vs), medium (m), weak (w) and shoulder (sh). FE-SEM images were captured with a Zeiss (Zemini) scanning electron microscope. Thermogravimetric analysis (TGA) was carried out with an SDT Q600 V20.9 Build 20 thermogravimetric analyzer in the temperature range of 25-700 °C in an argon atmosphere at the rate of 10 °C min⁻¹. Rigaku Smartlab X-ray diffractometer (model TTRAX III) was employed for powder X-ray diffraction (PXRD) measurements at 50 kV, 100 mA using Cu-Ka ($\lambda = 1.5406$ Å) radiation. N₂ sorption isotherms were recorded by using Quantachrome Autosorb iQ-MP volumetric gas adsorption equipment at -196 °C. Before the sorption analysis, the degassing of the compound was carried out at 100°C under high vacuum for 12 h. Fluorescence sensing studies were performed with a HORIBA JOBIN YVON Fluoromax-4 spectrofluorometer. A Bruker Avance III 600 NMR spectrometer was used for recording ¹H NMR spectra at 600 MHz. Pawley refinement was carried out using Materials Studio software.

Figure S1. Structure of linker (H₂BPDC-(SO₃H)₂).

Figure S2. ¹H NMR of linker (H₂BPDC-(SO₃H)₂).

Figure S3. ¹³C NMR of linker (H₂BPDC-(SO₃H)₂).

Figure S4. FESEM image of 1'.

Figure S5. EDX spectrum of 1'.

Figure S6. EDX elemental mapping of 1'.

Figure S7. Pawley fit for the PXRD pattern of as-synthesized 1. Blue lines and red dots denote simulated and observed patterns, respectively. The peak positions and difference plot are displayed at middle ($R_p = 3.38$ %, $R_{wp} = 4.79$ %).

Figure S8. FT-IR spectra of (a) H_2BPDC -(SO₃H)₂ ligand (black), (b) as-synthesized 1 (red) and (c) activated 1' (blue).

Figure S9. PXRD pattern of 1' (red) and 1" (black).

Figure S10. TGA curves of as-synthesized 1 (red) and activated 1' (black) recorded in a nitrogen atmosphere in the temperature range of 30-700 °C at a heating rate of 10 °C min⁻¹.

Figure S11. Temperature dependent PXRD patterns of 1' up to 450 °C.

Figure S12. Temperature dependent FT-IR spectra of 1' up to 450 °C.

Figure S13. N_2 adsorption (green circles) and desorption (pink circles) isotherms of thermally activated 1' recorded at -196 °C.

Figure S14. Fluorescence excitation (black) and emission (red) spectra of 1'.

Figure S15. Solid state fluorescence spectra of 1 (black), 1' (red) and linker (blue).

Figure S16. Stern-Volmer plot for the fluorescence emission quenching of 1' in presence of Cu^{2+} solution.

Figure S17. Lifetime decay profile of 1' before and after the addition of 2 mM Cu^{2+} acetonitrile solution.

Figure S18. Fluorescence intensity of 1' dispersed in acetonitrile after addition of 2 mM solution of $Cu(NO_3)_2$ in acetonitrile (500 µL) in presence of 2 mM solution of $Cr(NO_3)_3$ in acetonitrile (500 µL).

Figure S19. Fluorescence intensity of 1' dispersed in acetonitrile after addition of 2 mM solution of $Cu(NO_3)_2$ in acetonitrile (500 µL) in presence of 2 mM solution of $Al(NO_3)_3$ in acetonitrile (500 µL).

Figure S20. Fluorescence intensity of 1' dispersed in acetonitrile after addition of 2 mM solution of $Cu(NO_3)_2$ in acetonitrile (500 µL) in presence of 2 mM solution of NaNO₃ in acetonitrile (500 µL).

Figure S21. Fluorescence intensity of 1' dispersed in acetonitrile after addition of 2 mM solution of $Cu(NO_3)_2$ in acetonitrile (500 µL) in presence of 2 mM solution of KNO₃ in acetonitrile (500 µL).

Figure S22. Fluorescence intensity of 1' dispersed in acetonitrile after addition of 2 mM solution of $Cu(NO_3)_2$ in acetonitrile (500 µL) in presence of 2 mM solution of $Mn(NO_3)_3$ in acetonitrile (500 µL).

Figure S23. Fluorescence intensity of 1' dispersed in acetonitrile after addition of 2 mM solution of $Cu(NO_3)_2$ in acetonitrile (500 µL) in presence of 2 mM solution of $Ni(NO_3)_2$ in acetonitrile (500 µL).

Figure S24. Fluorescence intensity of 1' dispersed in acetonitrile after addition of 2 mM solution of $Cu(NO_3)_2$ in acetonitrile (500 µL) in presence of 2 mM solution of $Mg(NO_3)_2$ in acetonitrile (500 µL).

Figure S25. Fluorescence intensity of 1' dispersed in acetonitrile after addition of 2 mM solution of $Cu(NO_3)_2$ in acetonitrile (500 µL) in presence of 2 mM solution of $Co(NO_3)_2$ in acetonitrile (500 µL).

Figure S26. Fluorescence intensity of 1' dispersed in acetonitrile after addition of 2 mM solution of $Cu(NO_3)_2$ in acetonitrile (500 µL) in presence of 2 mM solution of $Hg(NO_3)_2$ in acetonitrile (500 µL).

Figure S27. Fluorescence intensity of 1' dispersed in acetonitrile after addition of 2 mM solution of $Cu(NO_3)_2$ in acetonitrile (500 µL) in presence of 2 mM solution of $Pb(NO_3)_2$ in acetonitrile (500 µL).

Figure S28. Fluorescence intensity of 1' dispersed in acetonitrile after addition of 2 mM solution of $Cu(NO_3)_2$ in acetonitrile (500 µL) in presence of 2 mM solution of $Cd(NO_3)_2$ in acetonitrile (500 µL).

Figure S29. Fluorescence intensity of 1' dispersed in acetonitrile after addition of 2 mM solution of $Cu(NO_3)_2$ in acetonitrile (500 µL) in presence of 2 mM solution of $Zn(NO_3)_2$ in acetonitrile (500 µL).

Figure S30. Change in the fluorescence intensity of 1' as a function of Cu^{2+} concentration.

Figure S31. The PXRD pattern of 1' (black line) and the PXRD pattern of 1' after sensing (red line).

Figure S32. EDX spectrum of 1' after treatment with Cu^{2+} .

Figure S33. EDX spectrum of the recyclable sample of 1'.

Figure S34. Fluorescence intensity of un-functionalized MOF with BPDC linker dispersed in acetonitrile and after addition of 2 mM solution of $Cu(NO_3)_2$ in acetonitrile (500 µL).

Figure S35. FT-IR spectra of MOF after treatment with Cu²⁺.

Figure S36. Fluorescence emission spectra of MOF and absorption all the analytes in acetonitrile.

Table S1. Fluorescence lifetimes of 1' before and after the addition of Cu^{2+} solution ($\lambda_{ex} = 270$ nm, pulsed diode laser).

Volume of Cu ²⁺ solution added (µL)	B_1	a ₁	τ_1 (ns)	<τ>* (ns)	χ ²
0	88.06	1	0.82	0.82	1.097
75	0.39	1	0.45	0.45	1.008

LOD calculation:

The calculation of limit of detection (LOD) was performed in a systematic manner. The standard deviation (σ) was calculated using the six-blank reading of MOF suspension in CH₃CN. The *K* value was obtained from the slop of the linear fit line of concentration verses fluorescence intensity plot (Figure S30). The above obtained parameters were used in the formula $3\sigma/K$ in order to get the LOD value.

The standard deviation σ for the blank reading of MOF suspension was calculated using the following formula as given below.

$$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$$

Where, $\chi_i =$ Maxima of fluorescence intensities.

 μ = The mean of all the maxima of fluorescence intensities.

N = The number of blank readings.

Table S2. Comparison table	e of different MOF	probes for the	sensing of Cu ²⁺ .
----------------------------	--------------------	----------------	-------------------------------

S.I N O.	MOF	LOD	Detection time	Stern- Volmer constant (K _{sv})	Reference
1	PCN-222-Pd(II)	50 nM	30 min	N.A	2
2	$[Cd_2(PAM)_2(dpe)_2(H_2O)_2] \cdot 0.5(dpe)$	1 mM	N.A	N.A	3
3	Eu ³⁺ @UiO-66-2COOH	1 nM	N.A	$5.35 \times 10^4 \mathrm{M}^{-1}$	4
4	MOF-525	67 nM	40 s	$4.5 \times 10^5 \mathrm{M}^{-1}$	5
5	Cd-MOF-74	78.7 μM	N.A	1.81 × 10 ³ M ⁻¹	6
6	[Eu(pdc) _{1.5} (DMF)]·(DMF) _{0.5} (H ₂ O) _{0.5}	0.1 μΜ	N.A	89.4 M ⁻¹	7
7	[NH ₄] ₂ [ZnL]·6H ₂ O	1 µM	N.A	N.A	8
8	$Zn(MeIM)_2 \cdot (DMF) \cdot (H_2O)_3$	1 mM	N.A	N.A	9
9	${Mg(DHT)(DMF)_2}n$	10 µM	N.A	170.2 M ⁻	10
10	Eu(FBPT)(H ₂ O)(DMF)	10 µM	N.A	N.A	11
11	[Cd(H ₂ ttac)bpp]n	0.63 mM	N.A	N.A	12

12	[Eu ₃ (HCOO) ₂ (R-COO) ₈]	10 µM	N.A	$2.35 \times 10^3 \mathrm{M}^{-1}$	13
13	${[Mg_3(ndc)_{2.5}(HCO_2)_2(H_2O)][NH_2Me_2] \cdot 2H_2O \cdot DMF}$	10 µM	N.A	1.986 × 10 ³ M ⁻¹	14
14	[Cd(2-aip)(bpy)]·2DMF	10 mM	10 s	N.A	15
15	${NH_2(CH_3)_2 \cdot Cd_{2.5}(L)_2(H_2O) \cdot (H_2O)}n$	0.1 mM	9 s	N.A	16
16	MIL-53-L	10 µM	N.A	$6.15 \times 10^3 \text{ M}^{-1}$	17
17	[Eu(HL)(L)(H ₂ O) ₂]·2H ₂ O	10 µM	N.A	N.A	18
18	Zr-BPDC-(SO ₃ H) ₂	0.22 μM	15s	$4.5 \times 10^5 \mathrm{M}^{-1}$	this work

References:

- 1. L. Zhou, W. Deng, Y. Wang, G. Xu, S. Yin and Q. Liu, *Inorg. Chem.*, 2016, 55, 6271–6277.
- 2. Y. Chen and H. Jiang, *Chem. Mater.*, 2016, **28**, 6698–6704.
- 3. J. Ye, L. Zhao, R. F. Bogale, Y. Gao, X. Wang, X. Qian, S. Guo, J. Zhao and G. Ning, *Chem. Eur. J.*, 2015, **21**, 2029-2037.
- 4. X. Zhao, D. Liu, H. Huang and C. Zhong, *Microporous Mesoporous Mater.*, 2016, **224**, 149-154.
- 5. L. Li, S. Shen, R. Lin, Y. Bai and H. Liu, Chem. Commun. , 2017, 53, 9986-9989.
- 6. T. Zheng, J. Zhao, Z. Fang, M. Li, C. Sun, X. Li, X. Wang and Z. Su, *Dalton Trans.*, 2017, **46**, 2456-2461.
- 7. B. Chen, L. Wang, Y. Xiao, F. R. Fronczek, M. Xue, Y. Cui and G. Qian, *Angew. Chem. Int. Ed.*, 2009, **48**, 500-503.
- 8. S. Liu, J. Li and F. Luo, *Inorg. Chem. Commun.*, 2010, **13**, 870-872.
- 9. S. Liu, Z. Xiang, Z. Hu, X. Zheng and D. Cao, J. Mater. Chem., 2011, 21, 6649-6653.
- 10. K. Jayaramulu, R. P. Narayanan, S. J. George and T. K. Maji, *Inorg. Chem.*, 2012, **51**, 10089–10091.
- Z. Hao, X. Song, M. Zhu, X. Meng, S. Zhao, S. Su, W. Yang, S. Song and H. Zhang, J. Mater. Chem. A, 2013, 1, 11043-11050.
- 12. L. Pang, G. Yang, J. Jin, M. Kang, A. Fu, Y. Wang and Q. Shi, *Cryst. Growth Des.*, 2014, 14, 2954–2961.
- 13. B. Liu, W. Wu, L. Hou and Y. Wanga, *Chem. Commun.*, 2014, **50**, 8731-8734.
- 14. S. Bhattacharyya, A. Chakraborty, K. Jayaramulu, A. Hazra and T. K. Maji, *Chem. Commun.*, 2014, **50**, 13567-13570.
- 15. H. Wang, P. Liu, H. Chen, N. Xu, Z. Zhou and S. Zhuo, *RSC Adv.*, 2015, **5**, 65110-65113.

- 16. C. Qiao, X. Qu, Q. Yang, Q. Wei, G. Xie, S. Chen and D. Yang, *Green Chem.*, 2016, **18**, 951-956.
- 17. C. Liu and B. Yan, Sensors and Actuators B, 2016, 235, 541–546.
- 18. Z. L, A. Liu, Y. Liu, J. Shen, C. Du and H. Hou, *Inorg. Chem. Commun.*, 2015, 56, 137-140.