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Materials and General Methods:

All the reagents and solvents were purchased from commercial sources and used without 
purification, except the H2BPDC-(SO3H)2 ligand which was synthesized by following a 
reported literature.1 The Attenuated Total Reflectance Infrared (ATR-IR) spectra were 
recorded using PerkinElmer UATR Two at ambient condition in the region 400-4000 cm−1. 
The notations used for characterization of the bands are broad (br), strong (s), very strong 
(vs), medium (m), weak (w) and shoulder (sh). FE-SEM images were captured with a Zeiss 
(Zemini) scanning electron microscope. Thermogravimetric analysis (TGA) was carried out 
with an SDT Q600 V20.9 Build 20 thermogravimetric analyzer in the temperature range of 
25-700 °C in an argon atmosphere at the rate of 10 °C min−1. Rigaku Smartlab X-ray 
diffractometer (model TTRAX III) was employed for powder X-ray diffraction (PXRD) 
measurements at 50 kV, 100 mA using Cu-Kα (λ = 1.5406 Å) radiation. N2 sorption 
isotherms were recorded by using Quantachrome Autosorb iQ-MP volumetric gas adsorption 
equipment at −196 °C. Before the sorption analysis, the degassing of the compound was 
carried out at 100°C under high vacuum for 12 h. Fluorescence sensing studies were 
performed with a HORIBA JOBIN YVON Fluoromax-4 spectrofluorometer. A Bruker 
Avance III 600 NMR spectrometer was used for recording 1H NMR spectra at 600 MHz. 
Pawley refinement was carried out using Materials Studio software.
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Figure S1. Structure of linker (H2BPDC-(SO3H)2).



Figure S2. 1H NMR of linker (H2BPDC-(SO3H)2).

Figure S3. 13C NMR of linker (H2BPDC-(SO3H)2).



Figure S4. FESEM image of 1′.

Figure S5. EDX spectrum of 1′.



Figure S6. EDX elemental mapping of 1′.

Figure S7. Pawley fit for the PXRD pattern of as-synthesized 1. Blue lines and red dots 
denote simulated and observed patterns, respectively. The peak positions and difference plot 
are displayed at middle (Rp = 3.38 %, Rwp = 4.79 %).



Figure S8. FT-IR spectra of (a) H2BPDC-(SO3H)2 ligand (black), (b) as-synthesized 1 (red) 
and (c) activated 1′ (blue).

Figure S9. PXRD pattern of 1′ (red) and 1′′ (black).



Figure S10. TGA curves of as-synthesized 1 (red) and activated 1′ (black) recorded in a 
nitrogen atmosphere in the temperature range of 30-700 °C at a heating rate of 10 °C min-1.

Figure S11. Temperature dependent PXRD patterns of 1′ up to 450 ℃.



Figure S12. Temperature dependent FT-IR spectra of 1′ up to 450 ℃.

Figure S13. N2 adsorption (green circles) and desorption (pink circles) isotherms of 
thermally activated 1′ recorded at –196 °C.



Figure S14. Fluorescence excitation (black) and emission (red) spectra of 1′.

Figure S15. Solid state fluorescence spectra of 1 (black), 1′ (red) and linker (blue).



Figure S16. Stern-Volmer plot for the fluorescence emission quenching of 1′ in presence of 
Cu2+ solution.

Figure S17. Lifetime decay profile of 1′ before and after the addition of 2 mM Cu2+ 
acetonitrile solution.



Figure S18. Fluorescence intensity of 1′ dispersed in acetonitrile after addition of 2 mM 
solution of Cu(NO3)2 in acetonitrile (500 µL) in presence of 2 mM solution of Cr(NO3)3 in 
acetonitrile (500 µL).

Figure S19. Fluorescence intensity of 1′ dispersed in acetonitrile after addition of 2 mM 
solution of Cu(NO3)2 in acetonitrile (500 µL) in presence of 2 mM solution of Al(NO3)3 in 
acetonitrile (500 µL).



Figure S20. Fluorescence intensity of 1′ dispersed in acetonitrile after addition of 2 mM 
solution of Cu(NO3)2 in acetonitrile (500 µL) in presence of 2 mM solution of NaNO3 in 
acetonitrile (500 µL).

Figure S21. Fluorescence intensity of 1′ dispersed in acetonitrile after addition of 2 mM 
solution of Cu(NO3)2 in acetonitrile (500 µL) in presence of 2 mM solution of KNO3 in 
acetonitrile (500 µL).



Figure S22. Fluorescence intensity of 1′ dispersed in acetonitrile after addition of 2 mM 
solution of Cu(NO3)2 in acetonitrile (500 µL) in presence of 2 mM solution of Mn(NO3)3 in 
acetonitrile (500 µL).

Figure S23. Fluorescence intensity of 1′ dispersed in acetonitrile after addition of 2 mM 
solution of Cu(NO3)2 in acetonitrile (500 µL) in presence of 2 mM solution of Ni(NO3)2 in 
acetonitrile (500 µL).



Figure S24. Fluorescence intensity of 1′ dispersed in acetonitrile after addition of 2 mM 
solution of Cu(NO3)2 in acetonitrile (500 µL) in presence of 2 mM solution of Mg(NO3)2 in 
acetonitrile (500 µL).

Figure S25. Fluorescence intensity of 1′ dispersed in acetonitrile after addition of 2 mM 
solution of Cu(NO3)2 in acetonitrile (500 µL) in presence of 2 mM solution of Co(NO3)2 in 
acetonitrile (500 µL).



Figure S26. Fluorescence intensity of 1′ dispersed in acetonitrile after addition of 2 mM 
solution of Cu(NO3)2 in acetonitrile (500 µL) in presence of 2 mM solution of Hg(NO3)2 in 
acetonitrile (500 µL).

Figure S27. Fluorescence intensity of 1′ dispersed in acetonitrile after addition of 2 mM 
solution of Cu(NO3)2 in acetonitrile (500 µL) in presence of 2 mM solution of Pb(NO3)2 in 
acetonitrile (500 µL).



Figure S28. Fluorescence intensity of 1′ dispersed in acetonitrile after addition of 2 mM 
solution of Cu(NO3)2 in acetonitrile (500 µL) in presence of 2 mM solution of Cd(NO3)2 in 
acetonitrile (500 µL).

Figure S29. Fluorescence intensity of 1′ dispersed in acetonitrile after addition of 2 mM 
solution of Cu(NO3)2 in acetonitrile (500 µL) in presence of 2 mM solution of Zn(NO3)2 in 
acetonitrile (500 µL).



Figure S30. Change in the fluorescence intensity of 1′ as a function of Cu2+ concentration.

Figure S31. The PXRD pattern of 1′ (black line) and the PXRD pattern of 1′ after sensing 
(red line).



Figure S32. EDX spectrum of 1′ after treatment with Cu2+.

Figure S33. EDX spectrum of the recyclable sample of 1′.



Figure S34. Fluorescence intensity of un-functionalized MOF with BPDC linker dispersed in 
acetonitrile and after addition of 2 mM solution of Cu(NO3)2 in acetonitrile (500 µL).

Figure S35. FT-IR spectra of MOF after treatment with Cu2+
.



Figure S36. Fluorescence emission spectra of MOF and absorption all the analytes in 
acetonitrile.

Table S1. Fluorescence lifetimes of 1′ before and after the addition of Cu2+ solution (λex = 
270 nm, pulsed diode laser).

Volume of 
Cu2+ solution 
added (µL)

B1 a1 τ1 (ns) <τ>* 
(ns)

χ2

0 88.06 1 0.82 0.82 1.097
75 0.39 1 0.45 0.45 1.008

LOD calculation:

The calculation of limit of detection (LOD) was performed in a systematic manner. The 
standard deviation (σ) was calculated using the six-blank reading of MOF suspension in 
CH3CN. The K value was obtained from the slop of the linear fit line of concentration verses 
fluorescence intensity plot (Figure S30). The above obtained parameters were used in the 
formula 3σ/K in order to get the LOD value.



The standard deviation σ for the blank reading of MOF suspension was calculated using the 
following formula as given below.

     

2( )ix
N
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Where, χi = Maxima of fluorescence intensities.

µ = The mean of all the maxima of fluorescence intensities.

N = The number of blank readings.

Table S2. Comparison table of different MOF probes for the sensing of Cu2+.

S.I
N
O.

MOF LOD
Detection 

time
Stern-

Volmer
constant 

(Ksv)

Reference

1 PCN-222-Pd(II) 50 nM 30 min N.A 2

2 [Cd2(PAM)2(dpe)2(H2O)2]·0.5(dpe) 1 mM N.A N.A 3

3 Eu3+@UiO-66-2COOH 1 nM N.A
5.35 × 

104 M−1 4

4 MOF-525 67 nM 40 s
4.5 × 

105 M−1 5

5 Cd-MOF-74 78.7 μM N.A
1.81 × 

103 M−1 6

6 [Eu(pdc)1.5(DMF)]·(DMF)0.5(H2O)0.5 0.1 μM N.A 89.4 M−1 7

7 [NH4]2[ZnL]·6H2O 1 μM N.A N.A 8

8 Zn(MeIM)2·(DMF)·(H2O)3 1 mM N.A N.A 9

9 {Mg(DHT)(DMF)2}n 10 μM N.A
170.2 M–

1 10

10 Eu(FBPT)(H2O)(DMF) 10 μM N.A N.A 11

11 [Cd(H2ttac)bpp]n 0.63 mM N.A N.A 12



12 [Eu3(HCOO)2(R-COO)8] 10 μM N.A
2.35 × 

103 M−1 13

13 {[Mg3(ndc)2.5(HCO2)2(H2O)][NH2Me2
]·2H2O·DMF}

10 μM N.A
1.986 × 
103 M−1 14

14 [Cd(2-aip)(bpy)]·2DMF 10 mM 10 s N.A 15

15 {NH2(CH3)2·Cd2.5(L)2(H2O)·(H2O)}n 0.1 mM 9 s N.A 16

16 MIL-53-L 10 μM N.A
6.15 × 
103 M−1 17

17 [Eu(HL)(L)(H2O)2]·2H2O 10 μM N.A N.A 18

18 Zr-BPDC-(SO3H)2 0.22 μM 15s
4.5 × 

105 M−1
this 
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