Electronic Supplementary Information

Enhanced visible-light-driven RhB removal with Mo-Ni bimetallistic sulfide/g-C₃N₄ nanosheets Schottky junction

Yaying Li, Fen Xu*, Lixian Sun*, Xiaogang Xue, Yingjing Wang, Lumin Liao, Yanxun Guan, Bin Li, Kexiang Zhang, Yongjin Zou, Huanzhi Zhang

Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials; School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China

* Corresponding authors:

E-mail: xufen@guet.edu.cn (F. Xu), sunlx@guet.edu.cn (L. X. Sun)

Contents

Fig. S1.	XPS spectra	S2
Fig. S2.	UV-vis absorption	S2
Fig. S3.	UV-vis DRS and XPS valence	S2
Fig. S4.	Photoelectrical measurement	S3
Table S1.	. XPS analysis of S 2p	S4
Table S2.	. BET	S4
Table S3.	Absorption edge and potentials	S4
Table S4.	Fluorescence lifetime parameter	S5

Fig. S1. XPS spectra of Mo 3d (a) and S 2p (b) of MNS.

Fig. S2. The UV-vis absorption of CNNS (a) and MNS/CNNS-10 (b).

Fig. S3. (a) UV-vis DRS of samples; (b) XPS valence of MNS.

Fig. S4.PL (a), R_s and R_{ct} values (b) and the transient photocurrent responses (c) for as-prepared samples, inset shows the relative fitting circuit diagram.

Samples	Binding energy (eV)	Assignment	Peak-area percentage (%)	
	162.5	Ni-S 2p _{3/2}	39.0	
	163.5	Mo-S 2p _{3/2}	23.9	
MNS	163.8	Ni-S 2p _{1/2}	14.2	
	164.7	Mo-S 2p _{1/2}	20.6	
	169.1	Sat.	2.30	
	162.1	Ni-S 2p _{3/2}	40.1	
	163.0	Mo-S 2p _{3/2}	15.9	
MNIC/CNINIC 10	163.5	Ni-S 2p _{1/2}	20.3	
IVIINS/CININS-10	164.5	Mo-S 2p _{1/2}	8.90	
	168.8	Sat.	14.8	

Table S1 XPS analysis of S 2p for MNS and MNS/CNNS-10.

Table S2 BET surface area, average BJH pore size, and pore volume of CN, CNNS, MNS and MNS/CNNS-*x*.

Sample	Pore volume (cm ³ ·g ⁻¹)	Pore diameter (nm)	BET surface area (m ² ·g ⁻¹)
CNNS	2.166	0.82	251.7
MNS	0.177	0.822	32.8
MNS/CNNS-7	0.303	0.822	38.1
MNS/CNNS-10	0.573	3.415	76.1
MNS/CNNS-12	0.120	3.425	83.6

Table S3 Absorption edge and potentials of CNNS, MNS and MNS/CNNS-*x*.

Sample	Wavelength	VB	VB (V vs	Bandgap	CB (V vs
	(nin)	(ev)	NIL)	(ev)	NHE)
CNNS	454	1.25	1.31	2.61	-1.30
MNS	398	0.50	0.56	1.29	-0.73
MNS/CNNS-7	427	1.29	1.35	2.71	-1.36
MNS/CNNS-10	435	1.24	1.3	2.71	-1.41
MNS/CNNS-12	436	1.20	1.26	2.76	-1.5

Catalysts	Lifetime (ns)		Pre-exponential factors B (%)		Average
	τ_1	τ_2	B_1	B_2	lifetime, τ (ns)
CNNS	1.8994	11.5951	58.86	41.14	5.89
MNS/CNNS-7	1.8705	12.0149	56.13	43.87	6.32
MNS/CNNS-10	2.0811	14.6712	61.89	38.11	6.88
MNS/CNNS-12	1.9861	11.7246	57.09	42.91	6.16

 Table S4 Fluorescence lifetime parameter of CNNS composites.