Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting information

Synergistic Impacts of Sonolysis Aided Photocatalytic Degradation of Water Pollutant

over Perovskite-type CeNiO₃ Nanospheres

Madappa C Maridevaru,^a Belqasem Aljafari,^b Sambandam Anandan,^{a,*} Muthupandian Ashokkumar^c

^aNanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli -620015, India. E-mail: <u>sanand@nitt.edu</u>

^bDepartment of Electrical Engineering, College of Engineering, Najran University, Najran 11001, Saudi Arabia.

^cSchool of Chemistry, University of Melbourne, Vic 3010, Australia.

Sl. No.	Content	Page no.
1	Hydrothermal reaction scheme	2
2	Molecular structure and absorption spectra of OG dye	3
4	Time dependence UV-Vis's absorption spectra	4-5
5	Sonophotodegradation efficiency plot and pseudo- first-order rate kinetics curve of OG dye using different catalysts.	6
6	Previous study on the sonophotocatalytic degradation of azo dye.	7
7	References	8

Scheme S1: Schematic exemplification of perovskite-type CeNiO₃ nanospheres formation.

Fig. S1: (a) Molecular structure and (b) absorption spectra of OG dye.

Fig. S2: Time-dependence UV-Vis absorption spectra of OG dye adsorption over CNO surface; (OG conc. 2×10^{-5} M, 0.2 g/L catalyst loading at natural pH-9).

Fig. S3: Time-dependence UV-Vis absorption spectra of photocatalytic degradation OG dye over CNO catalyst under visible photon irradiation; (OG conc. 2×10^{-5} M, 0.2 g/L catalyst loading at natural pH-9).

Fig. S4: a) Sonophotodegradation efficacy plot and (b) pseudo-first-order rate kinetics plot of OG dye using as-synthesized NiO, CeO₂, and CNO catalyst samples.

Catalyst sample	e Irradiation source		Catalyst dosage	Orange-G dye concentrati	Degradation efficiency	Ref.
	Light	Ultrasonic		on		
Sepiolite/TiO ₂ composites	300 W Xe lamp (ORIEL,68811 ARC Lamp) with a 365 nm UV pass filter		0.8 g/L	10 mg/L	The Orange-G removal efficiency can achieve 98.8% after 150 min of irradiation	1
WO ₃ –TiO ₂ nanohybrid	150W tungsten halogen lamp ($\lambda \ge 400$ nm; intensity $80,600 \pm 10$ lx)		1 g /L	3 x 10 ⁻⁵ M	94% Orange G dye was decolorized in 210 min at neutral pH with WO ₃ -TiO ₂ nanohybrid	2
Titanium aminophosphates			150 mg /100 mL	1x10 ⁻⁴ M	The degradation efficacy of OG was found to be maximum (97.1 %) at 0.001 M of H ₂ O ₂ after a period of 250 min.	3
FeVO ₄	500 W Xe arc lamp (OSRAM, Germany) and an UV cut filter as Visible source		0.5 g/L	5 mg/L	The removal of OG dye in an aqueous solution with 15 mmol/L H_2O_2 at pH 7.0 reached 93.2% 60 min.	4
TiO ₂	Xe-arc lamp (450 W, Oriel)	Sono waves: 213 kHz and 20 W.	1 g/L	9 x 10 ⁻⁵ M	Herein, US and UV are combined and significant enhancement in the degradation (85% in 75 min) of OG was observed	5
Fe ³⁺ / Fe(OH) ²⁺	Xe-arc lamp, λ < 320nm	Sono waves: 213 kHz and 20 W.	0.05mM	9 x 10 ⁻⁵ M	Sonophotocatalytic process revealed 40 % of mineralization (TOC) in 240 min.	6
CeNiO ₃	UV source (352 nm: 6W)	US source: 38-160 kHz power of 50 Watt (Kaijo 30110, Japan)	0.2 g/L	2 x 10 ⁻⁵ M	Under optimum conditions, sonophotocatalytic efficacy shows 73.63 % in 240 min, 87 %, and 94.67 % in 180 min, under the UV and US irradiation of 38 kHz, 100 kHz, and 160 kHz, respectively.	Prese nt work

Table S1: Previous study on the synergistic influence of sonophotocatalyticdegradation of azo dye.

References:

- F. Zhou, C. Yan, T. Liang, Q. Sun, H. Wang, Photocatalytic degradation of Orange G using sepiolite-TiO2 nanocomposites: Optimization of physicochemical parameters and kinetics studies, Chemical Engineering Science, 2018. doi: https://doi.org/10.1016/j.ces.2018.03.016
- U.O. Bhagwat, K. Raja Kumar, A. Syed, N. Marraiki, V. Ponnusamy, S. Anandan, Facile Hydrothermal Synthesis of Tungsten Trioxide/Titanium Dioxide Nanohybrid Structures as Photocatalyst for Wastewater Treatment Application, Journal of Cluster Science, 2021. https://doi.org/10.1007/s10876-021-02053-0.
- A. Rajini, M. Nookaraju, S. Chirra, A. Ajay kumar, N. Venkatathri, Titanium aminophosphates: Synthesis, characterization, and Orange G dye degradation studies, *RSC Adv.*, 2015, doi: 10.1039/C5RA19117C.
- X. Ou, J. Yan, F. Zhang, C. Zhang, Accelerated degradation of orange G over a wide pH range in the presence of FeVO4, Ultrasonics Sonochemistry, 2015, 24, 221–229. doi.org/10.1016/j.ultsonch.2014.11.017.
- J. Madhavan, F. Grieser, M. Ashokkumar, Degradation of orange-G by advanced oxidation processes Front. Environ. Sci. Eng. 2018, 12(1), 7. https://doi.org/10.1007/s11783-018-1013-3
- 6) J. Madhavan, F. Grieser, M. Ashokkumar, Kinetics of the sonophotocatalytic degradation of orange-G in presence of Fe³⁺, Water Science & Technology—WST, 60, 2009, 8. doi: 10.2166/wst.2009.631.