Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Information

F-doped zinc ferrite as high-performance anode materials for

lithium-ion battery

Qiong Zhao, a Puguang Peng, Piao Zhu, Gang Yang, Rui Ding, Ping Gao, Xiujuan Sun, and Enhui Liu and Enhui Liu

^aKey Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, ^{College of}

Chemistry, Xiangtan University, Hunan 411105, P. R. China

*Corresponding authors E-mail: sunxj594@xtu.edu.cn; liuenhui99@sina.com

Fig. S1. (a-b) SEM images of ZFO; and (c)TEM image of ZFO; SEM and TEM images of

ZFO-F₃

Fig. S2. The particle size distribution of ZFO-F₁(a), ZFO-F₂(b), ZFO-F₃(c) calculated from

SEM images.

Fig. S3. N₂ adsorption-desorption isotherms and the corresponding pore size analysis. (a)

ZFO and (b) ZFO-F₂.

Fig. S4. HRTEM diagram of zinc ferrate quenched in ice water and fluorine salt solution

respectively

Fig. S5. The energy dispersive X-ray spectroscopy (EDX) of ZFO-F₂.

Fig. S6. Full XPS spectrum of ZFO-F₂.

Fig. S7. CV results of the first three cycles of ZFO.

Fig. S8. Specific energy of ZFO, ZFO-F₁, ZFO-F₂, ZFO-F₃.

Fig. S9. Cycle life diagram of ZFO and ZFO-F₂ for 500 cycles

Fig. S10. Rate performance and cycle life diagrams for ZFO₅ ZFO-F₁, ZFO-F₂, ZFO-F₃ materials assembled into full cells(a,b)

Materials	Lattice spacing (220)
ZFO	0.301 nm
ZFO-F ₁	0.2985 nm
ZFO-F ₂	0.2980 nm
ZFO-F ₃	0.2982 nm

Table S1. The (220) crystalline surface crystal spacing of ZFO, ZFO-F₁, ZFO-F₂, ZFO-F₃.

Ols	M-O bond (%)	Oxygen vacancy (%)	Oxygen absorption (%)
ZFO	50.22	47.77	2.01
ZFO-F ₁	38.68	57.43	3.89
ZFO-F ₂	26.12	68.73	5.15
ZFO-F ₃	12.20	78.83	8.97

Table S2. The contents of various O formats in ZFO and ZFO-F (obtained by O 1s XPS spectra)

materials	ZFO	ZFO-F ₁	ZFO-F ₂	ZFO-F ₃
Rs	5.576	4.902	3.28	5.277
$R_{\rm ct}$ (ohm)	101.1	80.52	43.12	82.00
$W(S \cdot sec^5)$	0.005689	0.005866	0.01096	0.005765

Table S3. The corresponding Rs, Rct and Warburg impedance values after fitting the impedance graphs of ZFO, ZFO-F₁, ZFO-F₂, ZFO-F₃.

Materials	Preparation methods	Initial conlumbic efficiency(%)	Cycling performance	Ref.
ZnFe ₂ O ₄ -Carbonaceous composites	Electrophoretic deposition	68.0	870 mAh·g ⁻¹ after 100 cycles at 0.5 A·g ⁻¹	1
Fabrication of ultrafine ZnFe2O4 nanoparticles	Electrospinning technology and hydrothermal	71.7	789.7 mAh·g ⁻¹ after 300 cycles at 0.2 A·g ⁻¹	2
multi-scaled ZnFe ₂ O ₄ microspheres	Self-template fabrication	70.6	681 mAh·g ^{−1} after 200 cycles at 0.5 A·g ⁻¹	3
Sulfur-doped ZnFe ₂ O ₄ nanoparticles	Hydrothermal method	97.3	604 mAh·g ⁻¹ after 60 cycles at 0.1 A·g ⁻¹	4
ZnO/ZnFe ₂ O ₄ /N-doped C micro-polyhedrons with hierarchical hollow structure	Self-template method	67.4	1000 mAh·g ⁻¹ after 100 cycles at 0.2 A·g ⁻¹	5
MOF derived ZnFe ₂ O ₄ nanoparticles	Scattered in hollow octahedra carbon skeleton	62.3	1780mAh·g ⁻¹ after 400 cycles at 0.2 A·g ⁻¹	6
α-Fe ₂ O ₃ nanoparticles into ZnFe ₂ O ₄	In-situ encapsulation micro-sized capsules	68	650mAh·g ⁻¹ after 500 cycles at 0.2 A·g ⁻¹	7
Nitrogen and sulfur co-doped graphene supported hollow ZnFe ₂ O ₄ nanosphere composites	Two-step hydrothermal method	64	729.06 mAh \cdot g ⁻¹ after 100 cycles at 03 A \cdot g ⁻¹	8
hollow ZnFe ₂ O ₄ nanospheres	solvothermal method	73.9	1101.3 mAh \cdot g ⁻¹ after 200 cycles at 0.2 A \cdot g ⁻¹	9

Table S4. List of the initial conlumbic efficiency and cycling performance of recent reported ZnFe₂O₄ anode materials prepared by other methods.

E doned ZnEerO	Solvent heating	968 mAh·g ⁻¹ after 200		
r-doped Zhre204	Solvent heating	72	cycles at 0.5 $\Delta \cdot \sigma^{-1}$	This work
particles	and quenching	12	cycles at 0.5 A g	

References

1. S. Das, D. Das, A. Mitra, S. Jena, A. Bhattacharya and S. B. Majumder, Materials Letters, 2021, 301.

2. Y. He, S. Yao, M. Bi, H. Yu, A. Majeed and X. Shen, *Electrochimica Acta*, 2021, **394**.

3. C. Chen, J. C. Huang and J. G. Duh, Journal of Alloys and Compounds, 2021, 862.

4. L. Nie, H. Wang, J. Ma, S. Liu and R. Yuan, *Journal of Materials Science*, 2016, **52**, 3566-3575.

5. Y. Ma, Y. Ma, D. Geiger, U. Kaiser, H. Zhang, G.-T. Kim, T. Diemant, R. J. Behm, A. Varzi and S. Passerini, *Nano Energy*, 2017, **42**, 341-352.

6. C. Mei, S. Hou, M. Liu, Y. Guo, T. Liu, J. Li, W. Fu, L. Wang and L. Zhao, *Applied Surface Science*, 2021, **541**, 148475.

7. W. Wu, Y. Wei, H. Chen, K. Wei, Z. Li, J. He, L. Deng, L. Yao and H. Yang, *Journal of Materials Science & Technology*, 2021, **75**, 110-117.

8. M. Wang, Y. Huang, X. Chen, K. Wang, H. Wu, N. Zhang and H. Fu, *Journal of Alloys and Compounds*, 2017, **691**, 407-415.

9. M. Yu, Y. Huang, K. Wang, X. Han, M. Wang, Y. Zhu and L. Liu, *Applied Surface Science*, 2018, **462**, 955-962.