Supporting information for:

First-principles calculations of structural, energetic, electronic,

optical, and photocatalytic properties of BaTaO₂N low-index

surfaces

Keyu Zhou, Yumeng Fo, Xin Zhou*

College of Environment and Chemical Engineering, Dalian University, Dalian 116622,

Liaoning, China

* Corresponding authors.

E-mail addresses: <u>zhouxin@dlu.edu.cn</u>.

Fig. S1 Slab models of (011), (101) and (111) surfaces for *trans* BaTaO₂N. The green, light blue, red, and dark blue balls represent Ba, Ta, O, and N atoms, respectively.

Fig. S2 The layer-resolved spin-up density of states for (a) t-(001)-TaON, (b) t-(001)-BaO, (c) t-(100)-TaO₂, and (d) t-(100)-BaN.

Fig. S3 The layer-resolved spin-up density of states for (a) c-(001)-TaON, (b) c-(001)-BaO, (c) c-(100)-Ta₂O₃N, and (d) c-(100)-Ba₂ON.

termination	step 1	step2 to O*/O-	step3 to	step 4 from	overpotential
		O*/N-O*	HOO*/O-HOO*/N-HOO*	HOO*/O-HOO*	
				/N-HOO*	
			(from O*) 2.79/ 2.73 /2.74		
<i>t-</i> (001)-TaON	-0.65	1.09 /3.36/0.63	(from O-O*) 0.52/0.46/0.47	1.69/ 1.75 /1.74	1.50
			(from N-O*) 3.25/3.19/3.20		
<i>t</i> -(001)-BaO	0.47	2.22/ 2.05 /—	(from O*) 0.93/0.92/—	1.29 /1.30/—	0.82
			(from O-O*) 1.10 /1.09/—		
<i>t</i> -(100)-TaO ₂	0.15	1.36/0.23/—	(from O*) 2.45/ 2.42 /—	0.96/ 0.99 /—	1.19
			(from O-O*) 3.57/3.55/—		
<i>t</i> -(100)-BaN	1.09	2.57 /—/1.67	(from O*) 0.61 /—/0.53	0.65 /—/1.78	1.34
			(from N-O*) 4.85/—/3.72		
			(from O*) 3.02/2.91/2.95		
<i>c</i> -(001)-TaON	-0.53	0.94/3.16/ 1.80	(from O-O*) 0.81/0.70/0.74	1.48/ 1.59 /1.56	0.83
			(from N-O*) 2.17/ 2.06 /1.59		
с-(001)-ВаО	0.86	2.53/2.09/—	(from O*) 0.64/0.64/—	0.89 /0.89/—	0.86
			(from O-O*) 1.08 /1.08/—		
			(from O*) 3.56/3.79/3.52		
<i>c</i> -(100)-Ta ₂ O ₃ N	-0.44	0.27/0.28/1.76	(from O-O*) 3.56/3.79/3.52	1.52/1.30/1.57	0.81
			(from N-O*) 2.08/2.31/ 2.04		
			(from O*) 0.83/0.63/0.63		
<i>c</i> -(100)-Ba ₂ ON	0.64	2.91/ 2.65 /2.65	(from O-O*) 1.08/ 0.89 /0.89	0.54/ 0.74 /0.74	1.42
			(from N-O*) 1.08/0.89/0.89		

Table S1 Free energies of every step (in eV) and the overpotential (in V) of OER for (001) and

(100) surfaces of $BaTaO_2N$. The most favorable pathway is highlighted by the numbers in bold.