Electronic Supplementary Information (ESI)

for

New Journal of Chemistry

A Dual-Emission Fluorescence-Enhanced Probe for Hydrogen Sulfide and Its Application in Biological Imaging

Minghao Li, Yang Jiao* and Chunying Duan

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China

^{*} To whom correspondence should be addressed.

E-mail: jiaoyang@dlut.edu.cn

Contents

- 1. Synthesis and characterization of compounds
- 2. Selectivity and anti-interference ability of DCH-S for NaHS
- 3. The capability of **DCH-S** for detecting NaHS at different pH
- 4. Kinetic studies
- 5. LC-MS analysis of the reaction system
- 6. Cytotoxicity assay
- 7. Determination of the detection limit
- 8. Theoretical calculations
- 9. Mean fluorescence intensities of confocal imaging in MCF-7 cells

1. Synthesis and characterization of compounds

Synthesis of Compound I^1

A mixture of 7-Hydroxycoumarin-3-carboxylic acid (1.03 g, 5.0 mmol), *N*-Bocpiperazine (0.931 g, 5.0 mmol), EDC·HCl (1.44 g, 7.5 mmol), HOBT (1.01 g, 7.5 mmol) in THF (20 mL) was stirred for 12 h at room temperature. The solvent was removed by evaporation, and the residue was washed with water. The obtained solid was redissolved in CH₂Cl₂ (2 mL) and TFA (2 mL), and the mixture was stirred for 30 min at room temperature. The solvent was evaporated and dried in vacuo to give compound **1** as a colorless powder (0.623g, 45.4%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.99 (s, 1H), 9.07 (s, 1H), 8.14 (s, 1H), 7.62 (d, *J* = 8.5 Hz, 1H), 6.86 (d, *J* = 8.6 Hz, 1H), 6.78 (s, 1H), 3.86 – 2.98 (m, 8H).

Synthesis of Compound 2^2

To a solution of 4-Chloro-7-chlorosulfonyl-2,1,3-benzoxadiazole (0.506 g, 2.0 mmol) in CH₂Cl₂ (20 mL) was added dropwise a solution of dimethylamine hydrochloride (0.204 g, 2.5 mmol) dissolved in CH₂Cl₂ (20 mL) with triethylamine (700 μ L, 5.0 mmol). The mixture was stirred at room temperature for 30 min before the solvent was removed under reduced pressure. The residue was purified through column chromatography (PE: EA = 5: 1) to give compound **2** as a colorless powder (0.302 g, 57.7%). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.3 Hz, 1H), 7.56 (d, *J* = 7.3 Hz, 1H), 2.96 (s, 6H).

Fig. S1. ¹H NMR spectrum of compound 1 in DMSO-*d*₆

Fig. S2. ¹H NMR spectrum of compound 2 in CDCl₃

Fig. S3. ¹H NMR spectrum of compound DCH in DMSO-*d*₆

Fig. S4. ¹³C NMR spectrum of compound DCH in DMSO- d_6

Fig. S5. ¹H NMR spectrum of compound DCH-S in DMSO-*d*₆

Fig. S6. ¹³C NMR spectrum of compound DCH-S in DMSO- d_6

Fig. S7. ESI-MS spectrum of compound DCH-S

2. Selectivity and anti-interference ability of DCH-S for NaHS

Fig. S8. Fluorescence responses of **DCH-S** (5 μ M) at 600 nm towards NaHS (50 μ M) and various analytes. Black bars represent the solution of **DCH-S** in the presence of various analytes. Red bars represent the addition of NaHS to the above solution, respectively. Analytes 1-19: None, NaNO₃, NaNO₂, Na₂SO₄, Na₂SO₃, Na₂S₂O₃, NaCl, KCl, CaCl₂, H₂O₂, L-ascorbic acid, Gluocose, Phe, Pro, Ala, His, Cys, Hcy, GSH.

3. The capability of **DCH-S** for detecting NaHS at different pH

Fig. S9. Fluorescence responses of **DCH-S** (5 μ M) at (A) 456 nm and (B) 600 nm in the presence and absence of NaHS (50 μ M) under different pH values.

4. Kinetic studies

Fig. S10 Time-dependent fluorescence intensities of **DCH-S** (5 μ M) at 600 nm in the presence of different concentration of NaHS (10, 20, 30, 50 μ M).

5. LC-MS analysis of the reaction system

Fig. S11. LC-MS analysis of the mixture of **DCH-S** and NaHS (10 equiv.). The peak at m/z = 498.10918 can be assigned to the produced **DCH** (calculated for $[M-H]^-$: 498.10889). The peak at m/z = 198.98189 can be assigned to the produced 2,4-dinitrothiophenol (calculated for $[M-H]^-$: 198.98190).

6. Cytotoxicity assay

Fig. S12. Relative growth rate (%) estimated by the MTT assay. The MCF-7 cells were cultured in the presence of $0-20 \mu M$ of (A) **DCH-S** and (B) **DCH** for 24 h, respectively.

7. Determination of the detection limit

The detection limit was calculated from the titration experiments according to the following equation³:

Detection limit = $3\sigma/k$

Where σ is the standard deviation of blank measurements, k is the slope of the linear regression equation (Fig. S13). The detection limit was calculated to be 47 nM.

Fig. S13 Determination of detection limits from the fluorescence intensity data.

8. Theoretical calculations

Fig. S14 The HOMO and LUMO of **DCH-S** and **DCH**. The geometries of the molecules were optimized and their frontier molecular orbital energies were calculated using Gaussian 16 (density functional theory/time-dependent density functional theory (DFT/TDDFT) at B3LYP/6-31G(d) level).

Fig. S15 Mean fluorescence intensities (MFI) of confocal imaging of (A) exogenous and (B) endogenous H_2S in MCF-7 cells. The error bars represent the standard deviation (\pm SD).

Probe structure	Solution	λ_{em}/nm	Response time	Detection limit	Ref.
	DMSO/PBS buffer (10 mM, pH 7.4, 1:9, v/v)	560/650	12 min	39.1 nM	4
	HEPES buffer (20 mM, pH 7.4, containing 20% DMSO)	630/805	10 min	0.5 μΜ	5
	DMF/PBS buffer (10 mM, pH 7.4, 1:1, v/v)	741	5 min	96 nM	6
	PBS buffer (10 mM, pH 7.4)	560	30 min	80 nM	7
COOH N O O NO ₂	PBS buffer (10 mM, pH 7.4, containing 1% DMSO)	668	10 min	14.8 nM	8
$N_{3} = 0$	EtOH/HEPES buffer (10 mM, pH 7.4, 3:7, v/v)	736	20 min	20 nM	9
$ \begin{array}{c} $	DMSO/PBS buffer (pH 7.4, 2:8, v/v)	644	3 min	88 nM	10
$\bigcirc 2^{N} \bigvee \bigcirc 0^{NO_{2}} \lor 0^{$	PBS buffer (10 mM, pH 7.4)	456/600	5 min	47 nM	This work

Table S1 Properties of the reported fluorescent probes for H_2S in recent years

References

- T. K. Yasutaka Kurishita, Akio Ojida, and Itaru Hamachi, *J Am Chem Soc*, 2010, 132, 13290-13299.
- 2 Y. Li, Y. Yang and X. Guan, *Anal Chem*, 2012, **84**, 6877-6883.
- 3 D. Pan, F. Luo, X. Liu, W. Liu, W. Chen, F. Liu, Y. Q. Kuang and J. H. Jiang, *Analyst*, 2017, **142**, 2624-2630.
- 4 W. Shu, S. Zang, C. Wang, M. Gao, J. Jing and X. Zhang, *Anal Chem*, 2020, **92**, 9982-9988.
- 5 Z. Chen, X. Mu, Z. Han, S. Yang, C. Zhang, Z. Guo, Y. Bai and W. He, *J Am Chem Soc*, 2019, **141**, 17973-17977.
- 6 K. Zhou, Y. Yang, T. Zhou, M. Jin and C. Yin, *Dyes Pigments*, 2021, **185**, 108901.
- 7 Q. Sun, H. Liu, Y. Qiu, J. Chen, F. S. Wu, X. G. Luo and D. W. Wang, Spectrochim Acta A Mol Biomol Spectrosc, 2021, **254**, 119620.
- Q. Yang, L. Zhou, L. Peng, G. Yuan, H. Ding, L. Tan and Y. Zhou, *New J Chem*, 2021, 45, 7315-7320.
- 9 T. Zhou, Y. Yang, K. Zhou, M. Jin, M. Han, W. Li and C. Yin, *Sensor Actuator B Chem*, 2019, **301**, 127116.
- 10 J. Yuan, T. B. Ren, S. Xu, C. J. Wang, X. B. Zhang and L. Yuan, *ACS Appl Bio Mater*, 2021, **4**, 6016-6022.