Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

> Supporting Information for Thermally-induced spin-crossover in the Fe(3-Ethynylpyridine)₂[$M(CN)_4$] series with M = Ni, Pd, and Pt. Role of the electron density found at the CN 5 σ orbital, by R. Terrero, Y. Avila, R. Mojica, A. Cano, M. Gonzalez, M. Avila, and E. Reguera

Figure S1. IR spectra at 300 K for the $Fe(3-Ethynylpyridine)_2[M(CN)_4]$ series with M = Ni, Pd, and Pt

Figure S2: Raman spectra for the Fe(3-Ethynylpyridine) $_2$ [M(CN) $_4$] series with M = Ni, Pd, and Pt at 300 K.

Figure S3: Raman spectra for the $Fe(3-Ethynylpyridine)_2[M(CN)_4]$ series with M = Ni, Pd, and Pt at 80 K.

Figure S4: TG curve for the Fe(3-Ethynylpyridine)₂[Pd(CN)₄].

Figure S5: TG curve for the Fe(3-Ethynylpyridine)₂[Pt(CN)₄].

Figure S6. XRD powder pattern experimental (red), calculated (black), and profile fitting difference (blue) for the complex Fe(3-Ethynylpyridine)₂[Pt(CN)₄]. The experimental pattern was fitted by the Le Bail method. Some spurious reflections are observed.

Figure S7. DSC curve for the $Fe(3-Ethynylpyridine)_2[M(CN)_4]$ series with M = Ni, Pd, and Pt in the temperature region where the spin transitions are observed.

Figure S8. N1s core-level region of the HRXPS spectra for the $K_2[M(CN)_4]$ series, where M = Ni, Pd, Pt. The N1s peak corresponding to KCN, which is free of π -back bonding, was included as a reference. The weak peak labeled as dp was ascribed to decomposition product under the sample irradiation with X-ray under a high vacuum.

Table S1: Details of data collection, crystal data, and structure refinement for Fe(3-Ethynylpyridine)₂[$M(CN)_4$] series with M = Ni, and Pd at 300 K.

Temperature	Fe(3-Ethynylpyridine) ₂ [Ni(CN) ₄]	Fe(3-Ethynylpyridine) ₂ [Pd(CN) ₄]				
Wavelength (Å)	1.5	418				
2θ range (°)	6-60					
Step size (°)	0.	01				
Time per step (s)	0.	01				
Crystal system	Ortho	rhombic				
Space Group	P2 ₁ 2 ₁ 2	P2 ₁ 2 ₁ 2				
Parameter (Å)	17.604 (5)	17.639 (1)				
	7.008 (3)	7.299 (6)				
	7.319 (1)	7.468 (10)				
V(Å ³)	902.92 (5)	961.41 (16)				
Z	2	2				
Refinement						
# of reflections	106	61				
# of refined paramet	ers					
Structural	52	52				
Profile	11	11				
R _{exp}	2.74	2.46				
R _{wp}	4.61	3.40				
R _B	5.52	4.80				
S	1.68	1.38				

Table S2: Unit cell parameters for the HS and LS phases reported for Hofmann-like 2D coordination polymers.

Metal	Ligand	a , in Å	b , in Å	c , in Å	V, in Å ³	Volume contraction, %	Ref.
Ni:HS	3-	16.7053(11)	7.1336(4)	7.3280(3)	818.72(8)	6.9	22
LS	chloropyrazine	16.511(2)	6.9222(10)	7.2033(7)	763.07(17)	0.8	23
Pd:HS	3-	15.657(2)	7.520(1)	7.2930(5)	845.25(17)		
LS	fluoropyridine	15.179(4)	7.240(2)	7.0840(15)	772.66(40)	8.6	20
Pt:HS	3-	15.6840(14)	7.5060(8)	7.2880(9)	843.71(16)		
LS	fluoropyridine	15.220(2)	7.2230(13)	7.0770(14)	771.01(20)	8.6	20
Pd:HS	Phthalazine	7.2433(4)	7.4455(4)	10.4263(9)	497.11(6)		~ -
LS		7.0962(7)	7.1676(7)	10.1546(16)	468.49(10)	5.7	25
Pt:HS	Phthalazine	7.2754(8)	7.4315(9)	10.3903(14)	501.04(11)		
LS		7.1262(5)	7.1724(5)	10.1727(8)	473.38(6)	5.5	25
Ni:HS	Pyridazine	7.222(3)	15.172(7)	7.433(3)	814.45(60)		
LS		6.9234(15)	14.676(3)	7.1195(15)	723.4(3)	11.2	24

Pd:HS	Pyridazine	7.365(9)	14.969(18)	7.538(9)	831.04(170)		
LS		7.0729(13)	14.583(3)	7.2986(13)	752.81(20)	9.4	24
Pt:HS	Pyridazine	7.401(2)	15.058(5)	7.538(2)	840.07(50)		
LS		7.0858(9)	14.587(18)	7.2887(9)	753.41(16)	10.3	24
Pt:HS	2,4 Bipyridine	7.5176(8)	23.803(2)	7.3695(7)	1318.71(20)		
LS		7.2122(3)	23.3642(9)	7.1140(3)	1198.76(8)	9.09	26

Table S3: Chemical analysis results for the obtained polycrystalline materials

Sample	%	Fe	%	М	%	6C	%	N	%	ίΗ
	Cal.	Exp.	Cal.	Exp.	Cal.	Exp.	Cal.	Exp.	Cal.	Exp.
Ni	13.15	12.89	13.81	13.56	50.85	51.04	19.77	20.05	2.42	2.35
Pd	11.82	11.98	22.53	22.04	45.74	45.99	17.79	17.12	2.12	2.22
Pt	9.95	10.01	34.78	35.07	38.51	37.87	14.97	15.10	1.79	1.56

Table S4. Microstructural analysis for $Fe(3-Ethynylpyridine)_2[M(CN)_4]$ series with M = Ni, and Pd at 300 K.

Sample	Average crystallite size (nm)	Average maximum strain (a.u.)
Ni	86.52 (14.98)*	37.67 (7.76)*
Pd	80.11 (23.31)*	72.51 (18.87)*

*) The quantities between parentheses are a measure of the degree of anisotropy, not of the estimated error.

Table S5. Refined atomic positions and thermal (B_{iso}) and occupation (Occ) factors for Fe(3-Ethynylpyridine)₂[M(CN)₄] series with M = Ni, and Pd at 300 K

Composition	site	x	У	Z	Biso	Occ			
	Fe(3-Ethynylpyridine) ₂ [Ni(CN) ₄]								
Fe	2b	0	1/2	0.244(3)	3.05(2)	1/2			
Ni	2a	0	0	0.774(3)	2.53(2)	1/2			
N1	4c	0.024(5)	0.279 (3)	0.472(6)	3.49(1)	1			
N2	4c	0.017(5)	0.298(3)	1.067(5)	3.49(1)	1			
N3	4c	0.124(7)	0.581(13)	0.254(8)	3.77(1)	1			
C1	4c	0.021(7)	0.185(3)	0.599(7)	3.49(1)	1			
C2	4c	0.015(7)	0.198(3)	0.942(8)	3.49(1)	1			
C3	4c	0.182(5)	0.448(3)	0.251(6)	4.44(1)	1			
C4	4c	0.256(6)	0.509(3)	0.247(8)	4.44(1)	1			
C5	4c	0.272(5)	0.703(3)	0.246(6)	4.44(1)	1			
C6	4c	0.214(5)	0.836(4)	0.248(4)	4.44(1)	1			

C7	4c	0.140(4)	0.775(3)	0.253(3)	4.44(1)	1
C8	4c	0.317(4)	0.374(3)	0.244(3)	4.44(1)	1
С9	4c	0.368(3)	0.259(2)	0.241(3)	4.44(1)	1
H1	4c	0.168	0.320	0.253	4.44	1
H2	4c	0.321	0.741	0.241	4.44	1
H3	4c	0.228	0.963	0.247	4.44	1
H4	4c	0.100	0.860	0.255	4.44	1
H5	4c	0.407	0.173	0.239	4.44	1
	—	1	1			
Composition	site	X	У	Z	Biso	Occ
		Fe(3-Ethyny	lpyridine) ₂ [Pc	I(CN)4]		
Fe	2b	0	1/2	0.243(4)	2.79(3)	1/2
Pd	2a	0	0	0.762(2)	3.08(3)	1/2
N1	4c	0.011(7)	0.305(5)	0.469(7)	4.59(1)	1
N2	4c	0.013(7)	0.289(5)	1.067(3)	4.59(1)	1
N3	4c	0.120(4)	0.579(8)	0.220(6)	3.94(1)	1
C1	4c	0.009(5)	0.200(5)	0.583(4)	4.59(1)	1
C2	4c	0.009(4)	0.197(5)	0.944(5)	4.59(1)	1
C3	4c	0.167(3)	0.428(5)	0.243(4)	4.19(4)	1
C4	4c	0.244(6)	0.452(1)	0.254(6)	4.19(2)	1
C5	4c	0.275(3)	0.626(5)	0.242(7)	4.19(3)	1
C6	4c	0.229(7)	0.777(2)	0.219(2)	4.19(1)	1
C7	4c	0.151(5)	0.754(1)	0.208(4)	4.19(2)	1
C8	4c	0.293(3)	0.297(4)	0.278(6)	4.19(1)	1
С9	4c	0.334(4)	0.166(3)	0.298(4)	4.19(4)	1
H1	4c	0.143	0.316	0.252	4.19	1
H2	4c	0.326	0.643	0.251	4.19	1
H3	4c	0.251	0.891	0.210	4.19	1
H4	4c	0.119	0.850	0.190	4.19	1
H5	4c	0.366	0.064	0.316	4.19	1

Table S6. Calculated inter-atomic distances (in Å) and bond angles (in °) from the refined crystal structure for Fe(3-Ethynylpyridine)₂[M(CN)₄] series with M = Ni, and Pd at 300 K

Bond distance (Å)	Angles (°)			
Fe(3-Ethynylpyridine) ₂ [Ni(CN) ₄] at 300 K				

Fe-N1 = 2.32(3)	N1-Fe-N2 = 87.99(1)	N3-C7-C6 = 119.59(1)
Fe-N2 = 1.94(3)	N2-Fe-N1 = 174.92(1)	C4-C8-C9 = 179.94(1)
Fe-N3 = 2.25(3)	N3-Fe-N3 = 176.11(1)	N3-C3-H1 = 117.00
Ni-C1 = 1.86(3)	N1-Fe-N1 = 87.70(1)	C4-C3-H1 = 124.00
Ni-C2 = 1.87(3)	N2-Fe-N2 = 96.43(1)	C4-C5-H2 = 120.00
C1-N1 = 1.14(2)	N1-Fe-N3 = 87.47(1)	C6-C5-H2 = 120.00
C2-N2 = 1.15(2)	N1-Fe-N3 = 89.73(1)	С5-С6-Н3 = 118.00
N3-C3 = 1.38(2)	N3-Fe-N2 = 89.83(1)	С7-С6-Н3 = 123.00
C3-C4 = 1.38(2)	N3-Fe-N2 = 92.76(1)	N3-C7-H4 = 120.00
C4-C5 = 1.38(2)	C1-Ni-C2 = 175.15(1)	C6-C7-H4 = 120.00
C5-C6 = 1.38(2)	C1-Ni-C1 = 93.13(1)	C8-C9-H5 = 180.00
C6-C7 = 1.38(2)	C2-Ni-C1 = 84.51(1)	
C4-C8 = 1.43(2)	C2-Ni-C2 = 98.15(1)	
C8-C9 = 1.21(2)	N1-C1-Ni = 166.49(1)	
	N2-C2-Ni = 167.16(1)	
	C1-N1-Fe = 164.79(1)	
	C2-N2-Fe = 165.11(1)	
	C3-N3-C7 = 120.87(1)	
	C3-N3-Fe = 123.64(1)	
	Fe-N3-C7 = 115.39(1)	
	N3-C3-C4 = 119.49(1)	
	C3-C4-C5 = 119.68(1)	
	C3-C4-C8 = 120.26(1)	
	C5-C4-C8 = 120.06(1)	
	C4-C5-C6 = 120.84(1)	
	C5-C6-C7 = 119.54(1)	

Bond distance (Å)	An	igles (°)					
Fe	Fe(3-Ethynylpyridine) ₂ [Pd(CN) ₄] at 300 K						
Fe-N1 = 2.22(3)	N1-Fe-N2 = 90.00(1)	N3-C7-C6 = 119.59(1)					
Fe-N2 = 2.04(3)	N2-Fe-N1 = 170.74(1)	C4-C8-C9 = 179.93(1)					
Fe-N3 = 2.21(3)	N3-Fe-N3 = 170.86(1)	N3-C3-H1 = 117.00					
Pd-C1 = 1.99(3)	N1-Fe-N1 = 80.75(1)	C4-C3-H1 = 124.00					
Pd-C2 = 1.99(3)	N2-Fe-N2 = 99.26(1)	C4-C5-H2 = 120.00					
C1-N1 = 1.14(3)	N1-Fe-N3 = 88.55(1)	C6-C5-H2 = 120.00					
C2-N2 = 1.14(3)	N1-Fe-N3 = 98.44(1)	С5-С6-Н3 = 120.00					
N3-C3 = 1.38(3)	N3-Fe-N2 = 81.68(1)	С7-С6-Н3 = 122.00					
C3-C4 = 1.38(3)	N3-Fe-N2 = 92.38(1)	N3-C7-H4 = 120.00					
C4-C5 = 1.38(3)	C1-Pd-C2 = 179.10(1)	C6-C7-H4 = 120.00					
C5-C6 = 1.38(3)	C1-Pd-C1 = 95.34(1)	C8-C9-H5 = 180.00					
C6-C7 = 1.38(3)	C2-Pd-C1 = 85.52(1)						
C4-C8 = 1.43(3)	C2-Pd-C2 = 93.63(1)						
C8-C9 = 1.21(3)	N1-C1-Pd = 174.63(1)						
	N2-C2-Pd = 169.62(1)						
	C1-N1-Fe = 172.98(1)						
	C2-N2-Fe = 164.07(1)						
	C3-N3-C7 = 120.87(1)						

C3-N3-Fe = 110.38(1)
Fe-N3-C7 = 128.23(1)
N3-C3-C4 = 119.48(1)
C3-C4-C5 = 119.68(1)
C3-C4-C8 = 120.26(1)
C5-C4-C8 = 120.07(1)
C4-C5-C6 = 120.84(1)
C5-C6-C7 = 119.54(1)

Table S7. Calculated atomic	positions for HS	phase of Fe(3-Etl	nynylpyi	ridine)2[Pt(CN)4].
-----------------------------	------------------	-------------------	----------	--------------	--------

Composition	site	х	У	Z	Biso	Occ	
	Fe(3-Ethynylpyridine) ₂ [Pt(CN) ₄]						
Pt	2a	0	0	0.764(7)	3.08(2)	1/2	
Fe	2b	0	0.5	0.246(6)	2.79(2)	1/2	
N1	4c	0.011(6)	0.309(5)	0.471(6)	4.59(1)	1	
N2	4c	0.014(3)	0.304(7)	1.067(6)	4.59(1)	1	
N3	4c	0.121(7)	0.577(8)	0.229(5)	3.94(1)	1	
C1	4c	0.008(2)	0.196(3)	0.583(5)	4.59(1)	1	
C2	4c	0.011(3)	0.189(4)	0.957(2)	4.59(1)	1	
C3	4c	0.169(3)	0.434(5)	0.247(7)	4.19(1)	1	
C4	4c	0.249(6)	0.450(3)	0.251(8)	4.19(1)	1	
C5	4c	0.279(5)	0.626(3)	0.242(6)	4.19(1)	1	
C6	4c	0.231(5)	0.772(4)	0.217(4)	4.19(1)	1	
C7	4c	0.153(2)	0.748(1)	0.216(4)	4.19(1)	1	
C8	4c	0.296(1)	0.297(3)	0.283(1)	4.19(1)	1	
С9	4c	0.339(3)	0.167(2)	0.301(3)	4.19(1)	1	
H1	4c	0.142	0.301	0.257	4.19	1	
H2	4c	0.341	0.642	0.250	4.19	1	
H3	4c	0.256	0.910	0.202	4.19	1	
H4	4c	0.114	0.863	0.193	4.19	1	
H5	4c	0.378	0.056	0.325	4.19	1	

Table S8. Inter-atomic distances (in Å) and bond angles (in °) from the calculated crystal structure for the HS phase of $Fe(3-Ethynylpyridine)_2[Pt(CN)_4]$.

Bond distance (Å)	Angles (°)		
Fe(3-Ethynylpyridine) ₂ [Pt(CN) ₄]			
Fe-N1 = 2.19(3)	N1-Fe-N2 = 92.12(8)	N3-C7-C6 = 121.13(2)	
Fe-N2 = 1.97(2)	N2- Fe-N1 = 172.42(1)	C4-C8-C9 = 176.25(1)	
Fe-N3 = 2.21(3)	N3- Fe-N3 = 173.28(1)	N3-C3-H1 = 117.00	
Pt-C1 = 1.98(2)	N1- Fe-N1 = 80.46(8)	C4-C3-H1 = 120.00	
Pt-C2 = 2.00(2)	N2- Fe-N2 = 95.33(8)	C4-C5-H2 = 118.00	

$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C1-N1 = 1.17(14)	N1-Fe-N3 = 88.03(2)	C6-C5-H2 = 122.00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C2-N2 = 1.17(14)	N1-Fe-N3 = 97.12(2)	С5-С6-Н3 = 120.00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N3-C3 = 1.35(1)	N3-Fe-N2 = 84.10(2)	С7-С6-Н3 = 122.00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C3-C4 = 1.41(1)	N3-Fe-N2 = 91.36(3)	N3-C7-H4 = 118.00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C4-C5 = 1.40(1)	C1-Pt-C2 = 176.74(1)	C6-C7-H4 = 120.00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C5-C6 = 1.37(1)	C1-Pt-C1 = 94.08(8)	С8-С9-Н5 = 176.00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C6-C7 = 1.39(2)	C2-Pt-C1 = 88.65(8)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C4-C8 = 1.42(4)	C2-Pt-C2 = 88.68(8)	
$\begin{array}{l} N2-C2-Pt = 173.17(4) \\ C1-N1-Fe = 166.03(4) \\ C2-N2-Fe = 176.95(1) \\ C3-N3-C7 = 117.72(6) \\ C3-N3-Fe = 113.29(5) \\ Fe-N3-C7 = 128.80(1) \\ N3-C3-C4 = 123.96(4) \\ C3-C4-C5 = 119.68(1) \\ C3-C4-C5 = 116.93(2) \\ C5-C4-C8 = 121.00(6) \\ C4-C5-C6 = 119.79(6) \\ C5-C6-C7 = 120.27(4) \end{array}$	C8-C9 = 1.22(2)	N1-C1-Pt = 177.68(1)	
C1-N1-Fe = 166.03(4) C2-N2-Fe = 176.95(1) C3-N3-C7 = 117.72(6) C3-N3-Fe = 113.29(5) Fe-N3-C7 = 128.80(1) N3-C3-C4 = 123.96(4) C3-C4-C5 = 119.68(1) C3-C4-C8 = 116.93(2) C5-C4-C8 = 121.00(6) C4-C5-C6 = 119.79(6) C5-C6-C7 = 120.27(4)		N2-C2-Pt = 173.17(4)	
$\begin{array}{l} \text{C2-N2-Fe} = 176.95(1) \\ \text{C3-N3-C7} = 117.72(6) \\ \text{C3-N3-Fe} = 113.29(5) \\ \text{Fe-N3-C7} = 128.80(1) \\ \text{N3-C3-C4} = 123.96(4) \\ \text{C3-C4-C5} = 119.68(1) \\ \text{C3-C4-C8} = 116.93(2) \\ \text{C5-C4-C8} = 121.00(6) \\ \text{C4-C5-C6} = 119.79(6) \\ \text{C5-C6-C7} = 120.27(4) \end{array}$		C1-N1-Fe = 166.03(4)	
$\begin{array}{l} C3-N3-C7 = 117.72(6) \\ C3-N3-Fe = 113.29(5) \\ Fe-N3-C7 = 128.80(1) \\ N3-C3-C4 = 123.96(4) \\ C3-C4-C5 = 119.68(1) \\ C3-C4-C8 = 116.93(2) \\ C5-C4-C8 = 121.00(6) \\ C4-C5-C6 = 119.79(6) \\ C5-C6-C7 = 120.27(4) \end{array}$		C2-N2-Fe = 176.95(1)	
C3-N3-Fe = $113.29(5)$ Fe-N3-C7 = $128.80(1)$ N3-C3-C4 = $123.96(4)$ C3-C4-C5 = $119.68(1)$ C3-C4-C8 = $116.93(2)$ C5-C4-C8 = $121.00(6)$ C4-C5-C6 = $119.79(6)$ C5-C6-C7 = $120.27(4)$		C3-N3-C7 = 117.72(6)	
Fe-N3-C7 = 128.80(1) N3-C3-C4 = 123.96(4) C3-C4-C5 = 119.68(1) C3-C4-C8 = 116.93(2) C5-C4-C8 = 121.00(6) C4-C5-C6 = 119.79(6) C5-C6-C7 = 120.27(4)		C3-N3-Fe = 113.29(5)	
N3-C3-C4 = 123.96(4) C3-C4-C5 = 119.68(1) C3-C4-C8 = 116.93(2) C5-C4-C8 = 121.00(6) C4-C5-C6 = 119.79(6) C5-C6-C7 = 120.27(4)		Fe-N3-C7 = 128.80(1)	
C3-C4-C5 = 119.68(1) C3-C4-C8 = 116.93(2) C5-C4-C8 = 121.00(6) C4-C5-C6 = 119.79(6) C5-C6-C7 = 120.27(4)		N3-C3-C4 = 123.96(4)	
C3-C4-C8 = 116.93(2) C5-C4-C8 = 121.00(6) C4-C5-C6 = 119.79(6) C5-C6-C7 = 120.27(4)		C3-C4-C5 = 119.68(1)	
C5-C4-C8 = 121.00(6) C4-C5-C6 = 119.79(6) C5-C6-C7 = 120.27(4)		C3-C4-C8 = 116.93(2)	
C4-C5-C6 = 119.79(6) C5-C6-C7 = 120.27(4)		C5-C4-C8 = 121.00(6)	
C5-C6-C7 = 120.27(4)		C4-C5-C6 = 119.79(6)	
		C5-C6-C7 = 120.27(4)	

Table S9. Calculated atomic positions for the phase of low temperature for Fe(3-Ethynylpyridine)₂[$M(CN)_4$] series with M = Ni, Pd, and Pt.

Composition	site	х	у	Z	Biso	Occ	
	Fe(3-Ethynylpyridine) ₂ [Ni(CN) ₄]						
Ni	2a	0	0	0.765(5)	3.05(2)	1/2	
Fe	2b	0	0.5	0.263(3)	2.53(2)	1/2	
N1	4c	0.021(5)	0.304(3)	0.464(6)	3.49(1)	1	
N2	4c	0.014(5)	0.306(3)	1.070(5)	3.49(1)	1	
N3	4c	0.113(7)	0.574(13)	0.252(8)	3.77(1)	1	
C1	4c	0.021(7)	0.182(3)	0.580(7)	3.49(1)	1	
C2	4c	0.014(7)	0.192(3)	0.948(8)	3.49(1)	1	
C3	4c	0.171(5)	0.443(3)	0.250(6)	4.44(1)	1	
C4	4c	0.249(6)	0.499(3)	0.250(8)	4.44(1)	1	
C5	4c	0.266(5)	0.699(3)	0.250(6)	4.44(1)	1	
C6	4c	0.207(5)	0.836(4)	0.249(4)	4.44(1)	1	
C7	4c	0.130(4)	0.768(3)	0.251(3)	4.44(1)	1	
C8	4c	0.309(4)	0.357(5)	0.249(3)	4.44(1)	1	
С9	4c	0.364(3)	0.247(2)	0.236(3)	4.44(1)	1	
H1	4c	0.154	0.290	0.250	4.44	1	
H2	4c	0.327	0.746	0.250	4.44	1	
H3	4c	0.219	0.994	0.250	4.44	1	

H4	4c	0.082	0.870	0.262	4.44	1
H5	4c	0.407	0.133	0.240	4.44	1

Composition	site	х	У	Z	Biso	Occ
		Fe(3-Ethyny	lpyridine) ₂ [Pd	I(CN)4]		
Pd	2a	0	0	0.758(5)	3.08(3)	1/2
Fe	2b	0	0.5	0.248(3)	2.79(3)	1/2
N1	4c	0.014(5)	0.304(3)	0.446(6)	4.59(1)	1
N2	4c	0.014(5)	0.305(3)	1.068(5)	4.59(1)	1
N3	4c	0.113(7)	0.576(2)	0.231(8)	3.94(1)	1
C1	4c	0.007(7)	0.197(3)	0.567(7)	4.59(1)	1
C2	4c	0.007(7)	0.197(3)	0.949(8)	4.59(1)	1
C3	4c	0.162(5)	0.428(3)	0.237(6)	4.19(4)	1
C4	4c	0.243(6)	0.447(3)	0.250(8)	4.19(2)	1
C5	4c	0.276(5)	0.627(3)	0.236(6)	4.19(3)	1
C6	4c	0.227(5)	0.776(4)	0.216(4)	4.19(1)	1
C7	4c	0.146(4)	0.746(3)	0.216(3)	4.19(2)	1
C8	4c	0.291(4)	0.293(3)	0.281(3)	4.19(1)	1
C9	4c	0.334(3)	0.160(2)	0.302(3)	4.19(4)	1
H1	4c	0.136	0.289	0.25	4.19	1
H2	4c	0.339	0.645	0.248	4.19	1
H3	4c	0.251	0.916	0.206	4.19	1
H4	4c	0.106	0.86	0.196	4.19	1
H5	4c	0.374	0.047	0.326	4.19	1

Composition	site	х	у	Z	Biso	Осс
		Fe(3-Ethyny	lpyridine) ₂ [Pt	(CN)4]		
Pt	2a	0	0	0.761(7)	3.08(2)	1/2
Fe	2b	0	0.5	0.253(6)	2.79(2)	1/2
N1	4c	0.014(6)	0.314(5)	0.450(6)	4.59(1)	1
N2	4c	0.015(3)	0.314(7)	1.064(6)	4.59(1)	1
N3	4c	0.113(7)	0.568(8)	0.234(5)	3.94(1)	1
C1	4c	0.009(2)	0.200(3)	0.566(5)	4.59(1)	1
C2	4c	0.009(3)	0.199(4)	0.951(2)	4.59(1)	1
C3	4c	0.16101(3)	0.42526(5)	0.250(7)	4.19(1)	1
C4	4c	0.24301(6)	0.44526(3)	0.250(8)	4.19(1)	1
C5	4c	0.27401(5)	0.62526(3)	0.236(6)	4.19(1)	1
C6	4c	0.22401(5)	0.77426(4)	0.217(4)	4.19(1)	1
C7	4c	0.14301(4)	0.74226(3)	0.217(3)	4.19(1)	1
C8	4c	0.28901(4)	0.29126(3)	0.281(3)	4.19(1)	1
C9	4c	0.33201(3)	0.15826(2)	0.302(3)	4.19(1)	1
H1	4c	0.137	0.285	0.261	4.19	1
H2	4c	0.337	0.642	0.246	4.19	1
H3	4c	0.248	0.913	0.208	4.19	1

H4	4c	0.103	0.860	0.193	4.19	1
H5	4c	0.372	0.048	0.326	4.19	1

Table S10. Interatomic distances (in Å) and bond angles (in °) from the calculated crystal structure for the phase of low temperature for $Fe(3-Ethynylpyridine)_2[M(CN)_4]$ series with M = Ni, Pd, and Pt.

Bond distance (Å)	An	gles (°)
	Fe(3-Ethynylpyridine) ₂ [Ni	i(CN) ₄]
Fe-N1 = 1.99(1)	N1-Fe-N2 = 89.74(1)	N3-C7-C6 = 122.14(1)
Fe-N2 = 1.92(1)	N2-Fe-N1 = 177.39(1)	C4-C8-C9 = 173.47(1)
Fe-N3 = 2.01(1)	N3-Fe-N3 = 176.11(1)	N3-C3-H1 = 117.00
Ni-C1 = 1.85(1)	N1-Fe-N1 = 91.52(1)	C4-C3-H1 = 120.00
Ni-C2 = 1.86(1)	N2-Fe-N2 = 89.10(1)	C4-C5-H2 = 120.00
C1-N1 = 1.17(7)	N1-Fe-N3 = 91.55(1)	C6-C5-H2 = 122.00
C2-N2 = 1.17(8)	N1-Fe-N3 = 90.97(1)	С5-С6-Н3 = 120.00
N3-C3 = 1.35(8)	N3-Fe-N2 = 91.29(1)	С7-С6-Н3 = 119.00
C3-C4 = 1.39(8)	N3-Fe-N2 = 86.14(1)	N3-C7-H4 = 116.00
C4-C5 = 1.39(8)	C1-Ni-C2 = 175.15(1)	C6-C7-H4 = 120.00
C5-C6 = 1.37(8)	C1-Ni-C1 = 87.53(1)	С8-С9-Н5 = 173.00
C6-C7 = 1.39(8)	C2-Ni-C1 = 90.20(3)	
C4-C8 = 1.41(8)	C2-Ni-C2 = 92.26(1)	
C8-C9 = 1.22(8)	N1-C1-Ni = 170.40(1)	
	N2-C2-Ni = 172.26(1)	
	C1-N1-Fe = 168.51(1)	
	C2-N2-Fe = 171.80(1)	
	C3-N3-C7 = 124.83(1)	
	C3-N3-Fe = 124.83(1)	
	Fe-N3-C7 = 118.52(1)	
	N3-C3-C4 = 123.89(1)	
	C3-C4-C5 = 118.25(1)	
	C3-C4-C8 = 120.17(1)	
	C5-C4-C8 = 121.58(1)	
	C4-C5-C6 = 118.85(1)	
	C5-C6-C7 = 120.23(1)	

Bond distance (Å)	Angles (°)		
Fe(3-Ethynylpyridine) ₂ [Pd(CN) ₄]			
Fe-N1 = 2.02(2)	N1-Fe-N2 = 90.98(6)	N3-C7-C6 = 121.71(1)	
Fe-N2 = 1.93(2)	N2-Fe-N1 = 178.03(1)	C4-C8-C9 = 177.61(1)	
Fe-N3 = 2.01(2)	N3-Fe-N3 = 172.69(1)	N3-C3-H1 = 117.00	
Pd-C1 = 1.98(2)	N1-Fe-N1 = 87.05(6)	C4-C3-H1 = 120.00	
Pd-C2 = 1.98(2)	N2-Fe-N2 = 90.99(6)	C4-C5-H2 = 120.00	
C1-N1 = 1.17(2)	N1-Fe-N3 = 88.65(2)	C6-C5-H2 = 122.00	
C2-N2 = 1.16(2)	N1-Fe-N3 = 96.66(2)	С5-С6-Н3 = 120.00	

N3-C3 = 1.35(1)	N3-Fe-N2 = 83.32(2)	C7-C6-H3 = 122.00
C3-C4 = 1.37(1)	N3-Fe-N2 = 91.54(2)	N3-C7-H4 = 116.00
C4-C5 = 1.41(1)	C1-Pd-C2 = 179.06(1)	C6-C7-H4 = 122.00
C5-C6 = 1.38(1)	C1-Pd-C1 = 92.98(6)	С8-С9-Н5 = 175.00
C6-C7 = 1.41(1)	C2-Pd-C1 = 87.95(6)	
C4-C8 = 1.40(3)	C2-Pd-C2 = 91.12(6)	
C8-C9 = 1.21(2)	N1-C1-Pd = 177.69(1)	
	N2-C2-Pd = 178.84(1)	
	C1-N1-Fe = 168.03(1)	
	C2-N2-Fe = 167.80(1)	
	C3-N3-C7 = 119.26(5)	
	C3-N3-Fe = 111.98(4)	
	Fe-N3-C7 = 128.76(1)	
	N3-C3-C4 = 121.84(3)	
	C3-C4-C5 = 119.27(1)	
	C3-C4-C8 = 120.26(1)	
	C5-C4-C8 = 120.07(1)	
	C4-C5-C6 = 118.97(5)	
	C5-C6-C7 = 118.54(4)	

Ang	gles (°)
Fe(3-Ethynylpyridine) ₂ [Pt	(CN) ₄]
N1-Fe-N2 = 93.41(4)	N3-C7-C6 = 121.81(1)
N2-Fe-N1 = 175.94(1)	C4-C8-C9 = 177.14(1)
N3-Fe-N3 = 172.78(1)	N3-C3-H1 = 119.00
N1-Fe-N1 = 82.53(4)	C4-C3-H1 = 118.00
N2-Fe-N2 = 90.65(4)	C4-C5-H2 = 118.00
N1-Fe-N3 = 90.21(1)	C6-C5-H2 = 122.00
N1-Fe-N3 = 95.22(1)	C5-C6-H3 = 120.00
N3-Fe-N2 = 84.59(1)	С7-С6-Н3 = 122.00
N3-Fe-N2 = 90.33(1)	N3-C7-H4 = 118.00
C1-Pt-C2 = 179.60(1)	C6-C7-H4 = 120.00
C1-Pt-C1 = 92.53(4)	C8-C9-H5 = 176.00
C2-Pt-C1 = 87.86(4)	
C2-Pt-C2 = 91.76(4)	
N1-C1-Pt = 176.53(1)	
N2-C2-Pt = 178.24(1)	
C1-N1-Fe = 164.46(1)	
C2-N2-Fe = 166.54(1)	
C3-N3-C7 = 118.86(3)	
C3-N3-Fe = 113.48(3)	
Fe-N3-C7 = 127.61(1)	
N3-C3-C4 = 122.55(2)	
C3-C4-C5 = 118.31(1)	
C3-C4-C8 = 119.24(2)	
C5-C4-C8 = 122.20(3)	
C4-C5-C6 = 119.25(3)	
	Ang Fe(3-Ethynylpyridine) ₂ [Pt N1-Fe-N2 = 93.41(4) N2-Fe-N1 = 175.94(1) N3-Fe-N3 = 172.78(1) N1-Fe-N1 = 82.53(4) N2-Fe-N2 = 90.65(4) N1-Fe-N3 = 90.21(1) N1-Fe-N3 = 95.22(1) N3-Fe-N2 = 84.59(1) N3-Fe-N2 = 84.59(1) C1-Pt-C2 = 179.60(1) C1-Pt-C1 = 92.53(4) C2-Pt-C1 = 87.86(4) C2-Pt-C2 = 91.76(4) N1-C1-Pt = 176.53(1) N2-C2-Pt = 178.24(1) C1-N1-Fe = 164.46(1) C2-N2-Fe = 166.54(1) C3-N3-C7 = 118.86(3) C3-N3-Fe = 113.48(3) Fe-N3-C7 = 127.61(1) N3-C3-C4 = 122.55(2) C3-C4-C5 = 118.31(1) C3-C4-C8 = 119.24(2) C5-C4-C8 = 122.20(3) C4-C5-C6 = 119.25(3)

C5-C6-C7 = 119.22(3)

Metal (M)	Ligand	Fe-L₂-Fe, in Å	Contraction, %	Fe-N≡C-M, in Å	Contraction, %	Reference
Ni: HS	3-	16.705	1.16	5.113	2.31	
LS	chloropyrazine	16.511		4.995		23
Pd: HS	3-	15.657	3.05	5.238	3.30	
LS	fluoropyridine	15.179		5.065		20
Pt: HS	3-	15.684	2.95	5.231	3.34	
LS	fluoropyridine	15.220		5.056		20
Pd: HS	Phthalazine	10.426	2.59	5.196	3.04	
LS		10.155		5.038		25
Pt: HS	Phthalazine	10.390	2.09	5.199	2.80	
LS		10.173		5.053		25
Ni: HS	Pyridazine*	15.172	3.27	5.182	4.19	
LS		14.676		4.965		24
Pd: HS	Pyridazine*	14.969	2.58	5.269	3.54	
LS		14.583		5.082		24
Pt: HS	Pyridazine*	15.058	3.12	5.282	3.77	
LS		14.588		5.083		24
Pt: HS	2,4 Bypiridine	23.803	1.84	5.264	3.95	
LS		23.364		5.065		26

Table S11. Solid contraction on the HS \rightarrow LS spin transition according to the reported structural information for Hofmann-like 2D coordination polymers, FeL₂[M(CN)₄]

*Fe(Pyridazine)[M(CN)₄]•H₂O

Validation of the Computational crystal structure relaxation method, $HS \rightarrow LS$

Table S12: Unit cell parameters, experimental and calculated, for Fe(3-Chloropyrazine)₂[Ni(CN)₄].

300 K, experimental	170K, experimental	Calculated	
HS phase	LS phase	LS phase	
C 1 2/m 1 (12) -	C 1 2/m 1 (12) -	C 1 2/m 1 (12) -	
monoclinic	monoclinic	monoclinic	
a[Å]= 16.7053(11)	a[Å]= 16.511(2)	a[Å]= 16.4214(4)	
b [Å]= 7.1336(4)	b [Å]= 6.9222(10)	b [Å]= 7.0900(2)	
c [Å]= 7.3280(3)	c [Å]= 7.2033(7)	c [Å]= 7.1756(8)	
β=110.358(5)°	β= 112.050(12)°	β= 112.1664(3)°	
V [ų]= 818.72(8)	V [ų]= 763.07(17)	V [ų]= 773.7064(76)	
Z=2	Z=2	Z=2	

300 K, experimental	180K, experimental	Calculated	
HS phase	LS phase	LS phase	
C 1 2/m 1 (12) -	C 1 2/m 1 (12) -	C 1 2/m 1 (12) -	
monoclinic	monoclinic	monoclinic	
a[Å]= 15.657(2)	a[Å]= 15.179(4)	a[Å]= 15.1332(3)	
b [Å]= 7.520(1)	b [Å]= 7.240(2)	b [Å]= 7.1129(2)	
c [Å]= 7.2930(5)	c [Å]= 7.0840(15)	c [Å]= 7.2448(3)	
β= 100.148(7)°	β= 97.027(18)°	β= 93.6123(14)°	
V [ų]= 845.25(17)	V [ų]= 772.66(40)	V [ų]= 778.291(23)	
Z=2	Z=2	Z=2	

Table S13: Unit cell parameters, experimental and calculated, for Fe(3-Fluoropyridine)₂[Pd(CN)₄].

Table S14: Unit cell parameters, experimental and calculated, for Fe(3-Fluoropyridine)₂[Pt(CN)₄].

300 K, experimental		180K, experimental	Calculated	
HS phase		LS phase	LS phase	
C 1 2/m 1 (12) -		C 1 2/m 1 (12) -	C 1 2/m 1 (12) -	
monoclinic		monoclinic	monoclinic	
	a[Å]= 15.6840(14)	a[Å]= 15.220(2)	a[Å]= 15.181(6)	
	b [Å]= 7.5060(8)	b [Å]= 7.2230(13)	b [Å]= 7.1811(3)	
	c [Å]= 7.2880(9)	c [Å]= 7.0770(14)	c [Å]= 7.2144(5)	
	β= 100.462(6)°	β= 97,688 (10)°	β= 99.332 (4)°	
	V [ų]= 843.71(16)	V [ų]= 771.01(20))	V [ų]= 776.115(9)	
	Z=2	Z=2	Z=2	