Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Copper (II) Complexes of Quinoline-based Ligands for Efficient Photoredox Catalysis of Atom Transfer Radical Addition (ATRA) Reaction

Pawittra Chaibuth,^{a,c} Nontakarn Chuaytanee,^a Jutawat Hojitsiriyanont,^a Kittipong Chainok,^b Sumrit Wacharasindhu,^a Oliver Reiser,^{*c} and Mongkol Sukwattanasinitt^{*a}

- ^a Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- ^b Materials and Textiles Technology, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathum Thani 12120, Thailand
- ^c Institut für Organische Chemie Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany

Table of Contents

S1
S4
S5
\$5
S6
S10
S16
S17
S19
S21
S25

X-Ray Crystallography Crystal data and structure refinement for all the complexes.

Identification code	[Cu ^{II} (1Q)Cl]Cl	[Cu ^{II} (2Q)Cl]Cl	[Cu ^{II} (3Q)Cl][CuCl ₄]
Empirical formula	$C_{21}H_{20}Cl_2CuN_4O$	$C_{48}H_{40}Cl_4Cu_2N_8O_2$	$C_{54}H_{36}Cl_6Cu_3N_8$
Formula weight	478.85	1029.76	1200.23
Temperature/K	296	100	296
Crystal system	monoclinic	monoclinic	triclinic
Space group	P2 ₁ /c	P2 ₁ /n	<i>P</i> -1
a/Å	16.6661(8)	13.3798(14)	13.9396(18)
b/Å	9.3649(5)	24.690(3)	15.824(2)
c/Å	14.0474(8)	14.1358(14)	16.096(2)
α/°	90	90	111.357(4)
β/°	109.943(2)	108.542(2)	98.835(4)
γ/°	90	90	115.205(4)
Volume/ų	2060.99(19)	4427.3(8)	2783.9(6)
Ζ	4	4	2
$\rho_{calc}g/cm^3$	1.543	1.545	1.432
µ/mm ⁻¹	1.339	3.816	1.466
F (000)	980.0	2104.0	1210.0
Crystal size/mm ³	$0.38 \times 0.34 \times 0.3$	$0.26 \times 0.26 \times 0.21$	0.34 × 0.32 × 0.19
Radiation	ΜοΚα (λ = 0.71073 Å)	CuKα (λ = 1.54178 Å)	MoKα (λ = 0.71073 Å)
2Θ range for data collection/°	6.378 to 56.656	7.506 to 144.96	5.842 to 57.642
Reflections collected	40421	52938	76310
Independent reflections	5132	8704	14494
R _{int} , R _{sigma}	0.0556, 0.0309	0.0308, 0.0209	0.0475, 0.0353
Data/restraints/parameters	5132/0/265	8704/0/583	14494/92/686
Goodness-of-fit on F ²	1.035	1.036	1.028
$R_1, wR_2 [l \ge 2\sigma (l)]$	0.0317, 0.0725	0.0248, 0.0659	0.0420, 0.1124
R_1 , wR_2 [all data]	0.0441, 0.0776	0.0257, 0.0666	0.0631, 0.1251
Largest diff. peak/hole / e Å ⁻³	0.31/-0.39	0.37/-0.49	0.66/-0.63

Fig. S1. Ellipsoid plots of (a) [Cu^{II}(1Q)Cl]Cl, (b) [Cu^{II}(2Q)Cl]Cl and (c) [Cu^{II}(3Q)Cl][CuCl₄] complexes.

(a)

(b)

(c)

Table S1Comparison of selected bong lengths (Å) and bond angles (°).

Complex	Cu [∥] • TPMA ª	Cu"•1Q	Cu"•2Q	Cu"• 3Q
Cu-N1	2.0759	1.9986	2.0016	2.0960
Cu-N2	2.0481	2.0676	2.1034	2.1092
Cu-N3	2.0759	1.9954	1.9981	2.0160
Cu-N4	2.0759	2.2738	2.1361	2.0750
Cu–Cl	2.2369	2.2540	2.2573	2.2154
N1-Cu-N2	80.71	81.30	81.02	82.00
N1-Cu-N3	80.71	150.36	152.77	79.40
N1-Cu-N4	80.71	94.17	101.16	81.80
N2-Cu-N3	117.45	83.77	83.62	103.8
N3 -Cu-N4	117.45	107.66	98.70	130.6
N4 -Cu-N2	117.45	78.55	81.71	118.10
Cl-Cu-N1	99.29	97.68	97.43	98.24
CI-Cu-N2	180.00	175.12	177.36	176.65
CI-Cu-N3	99.29	99.19	96.97	98.25
CI-Cu-N4	99.29	97.31	100.73	100.91

^aData obtained from W. T. Eckenhoff and T. Pintauer, *Inorg. Chem.*, 2007, **46**, 5844-5846.

	[Cu ^{ll} (10)Cl]Cl							
Cu1-Cl1	2.2540 (5)	Cu1-N3	1.9954 (15)					
Cu1-N1	1.9986 (15)	Cu1-N4	2.2738 (15)					
Cu1-N2	2.0676 (13)							
Cl1-Cu1-N4	97.31 (4)	N2-Cu1-N4	78.55 (5)					
N1-Cu1-Cl1	97.68 (5)	N3-Cu1-Cl1	99.19 (4)					
N1-Cu1-N2	81.30 (6)	N3-Cu1-N1	150.36 (6)					
N1-Cu1-N4	107.66 (6)	N3-Cu1-N2	83.77 (6)					
N2-Cu1-Cl1	175.12 (4)	N3-Cu1-N4	94.17 (6)					
	[C	u"(2Q)Cl]Cl						
Cu1-Cl1	2.2573 (4)	Cu2-Cl2	2.2385 (4)					
Cu1-N1	2.0016 (12)	Cu2-N5	1.9947 (13)					
Cu1-N2	2.1034 (12)	Cu2-N6	2.1222 (12)					
Cu1-N3	1.9981 (13)	Cu2-N7	1.9944 (12)					
Cu1-N4	2.1361 (13)	Cu2-N8	2.1445 (12)					
N1-Cu1-Cl1	97.43 (4)	N5-Cu2-Cl2	96.16 (4)					
N1-Cu1-N2	81.02 (5)	N5-Cu2-N6	81.19 (5)					
N1-Cu1-N4	101.16 (5)	N5-Cu2-N8	100.17 (5)					
N2-Cu1-Cl1	177.36 (3)	N6-Cu2-Cl2	171.05 (3)					
N2-Cu1-N4	81.71 (5)	N6-Cu2-N8	81.32 (5)					
N3-Cu1-Cl1	96.97 (4)	N7-Cu2-Cl2	96.75 (4)					
N3-Cu1-N1	152.77 (5)	N7-Cu2-N5	156.39 (5)					
N3-Cu1-N2	83.62 (5)	N7-Cu2-N6	83.01 (5)					
N3-Cu1-N4	98.70 (5)	N7-Cu2-N8	94.65 (5)					
N4-Cu1-Cl1	100.73 (4)	N8-Cu2-Cl2	107.59 (4)					
	[Cu ⁱⁱ	(3Q)Cl][CuCl ₄]						
Cu1-Cl1	2.2154 (8)	Cu2-N8	2.077 (2)					
Cu1-N1	2.096 (2)	Cu3-Cl3	2.2371 (18)					
Cu1-N2	2.1092 (19)	Cu3-Cl4	2.271 (2)					
Cu1-N3	2.016 (2)	Cu3–Cl5	2.2720 (18)					
Cu1-N4	2.075 (2)	Cu3-Cl6	2.2383 (17)					
Cu2-Cl2	2.2267 (8)	Cu3A–Cl3A	2.248 (11)					
Cu2-N5	1.997 (2)	Cu3A–Cl4A	2.398 (13)					
Cu2-N6	2.1279 (19)	Cu3A-Cl5A	2.144 (8)					
Cu2-N7	2.034 (2)	Cu3A-Cl6A	2.138 (9)					
N1-Cu1-Cl1	98.24 (6)	N7-Cu2-N6	81.14 (8)					
N1-Cu1-N2	79.36 (8)	N7-Cu2-N8	108.40 (10)					
N2-Cu1-Cl1	176.65 (6)	N8-Cu2-Cl2	99.07 (7)					
N3-Cu1-Cl1	98.25 (7)	N8-Cu2-N6	81.69 (8)					
N3-Cu1-N1	130.61 (9)	Cl3-Cu3-Cl4	100.96 (10)					
N3-Cu1-N2	81.71 (8)	Cl3-Cu3-Cl5	99.01 (8)					
N3-Cu1-N4	118.15 (9)	Cl3-Cu3-Cl6	133.06 (9)					
N4-Cu1-Cl1	100.91 (6)	Cl4-Cu3-Cl5	134.81 (11)					
N4-Cu1-N1	103.76 (8)	Cl6-Cu3-Cl4	97.80 (10)					
N4-Cu1-N2	81.99 (8)	Cl6-Cu3-Cl5	97.37 (8)					
N5-Cu2-Cl2	97.15 (6)	CI3A-Cu3A-Cl4A	93.6 (6)					

 Table S2
 Bond lengths (Å) and bond angles (°) for all the complexes

N5-Cu2-N6	82.69 (8)	CI5A-Cu3A-CI3A	99.7 (4)
N5-Cu2-N7	130.76 (9)	CI5A-Cu3A-CI4A	126.3 (7)
N5-Cu2-N8	114.77 (9)	CI6A-Cu3A-CI3A	145.4 (5)
N6-Cu2-Cl2	179.21 (6)	CI6A-Cu3A-CI4A	91.3 (6)
N7-Cu2-Cl2	98.41 (6)	CI6A-Cu3A-CI5A	104.8 (4)

Apparatus for ATRA reaction

Fig. S2. In-house made photoreactor equipped with (a) white LEDs (b) CFL light bulb (c) emission spectra of white CFL (blue) and white LEDs (yellow) lines

Photophysical properties

Table S3Summary of photophysical data and energy gap calculation for ligand and Cu-ligand
complexes.

Ligand				Cu (II)•Ligand				Cu (I)•Ligand	
	λ_{abs}	ε [m²/mol]	λ_{em}	λ_{abs}	ε [m²/mol]	λ_{onset}	E_{gap}	λ_{onset}	E_{gap}
ТРМА	257	8611	426	295	2858	510	2.43	578	2.15
1Q	346	3703	464	291	5457	520	2.38	603	2.06
2Q	365	6151	511	292	6704	545	2.28	640	1.94
3Q	382	8878	518	294	7321	600	2.07	756	1.64

The energy gaps (E_{gap}) were determined by using the onset of the longest wavelength absorption (λ_{onset}).

Cyclic voltammetry

Fig. S3. Cyclic voltammogram of Cu(II)-ligand complexes at 1.0 mM in CH_3CN Vs ferrocene

Table S4

Summary of electrochemical data for Cu-ligand complexes

Complex	E _{1/2} (Cu ²⁺ L) [V]	ΔE _p [mV]	i _{pa} /i _{pc}
CuCl ₂ /TPMA	-0.738	73	0.99
CuCl ₂ / 1Q	-0.669	71	0.94
CuCl ₂ / 2Q	-0.551	88	0.90
CuCl ₂ / 3Q	-0.407	76	1.00

Complex solutions (1.0 mM) of $CuCl_2$ and ligand (**TPMA**, **1Q**, **2Q**, and **3Q**) were prepared in CH_3CN containing 0.10 M NBu_4PF_6 as supporting electrolyte at a scanning rate (v) of 100 mV/s. Potentials were measured relative to a ferrocenium/ferrocene couple.

Catalytic reaction study

Fig. S4. ¹H NMR spectra of crude product, after flash column chromatography, from reaction between styrene and CCl_4 in CD_3OD , in the presence of toluene internal standard

• Spectrum for 100% conversion and 100% Yield, calculated from ¹H NMR integrations of aliphatic protons of product (black) and methylene protons of toluene (pink).

• Spectrum for 95% conversion and 96% Yield, calculated from ¹H NMR integrations of all alkene protons (red), aliphatic protons of product (black) and methylene protons of toluene (pink).

• Spectrum of styrene (substrate, red) and toluene (internal standard, pink) mixture

- **Fig. S5.** ¹H NMR spectra of crude product, after flash column chromatography, from reaction between styrene and CHCl₃ in CD₃OD, in the presence of toluene internal standard
 - Spectrum for 87% conversion and 86% Yield, calculated from ¹H NMR integrations of all alkene protons (red), aliphatic protons of product (black) and methylene protons of toluene (pink).

• Spectrum for 40% conversion and 40% Yield, calculated from ¹H NMR integrations of all alkene protons (red), aliphatic protons of product (black) and methylene protons of toluene (pink).

Fig. S6. Time dependence study for reaction of styrene with CCl_4 catalyzed by copper complexes with various ligands

 $\begin{tabular}{ll} Table S5 & Conversions, yields and turn over numbers obtained from addition reaction of CCl_4 to various alkenes catalyzed by copper complexes of various ligands \end{tabular}$

	CuCl ₂ /Ligand	CI	CCI3
R' ⁺ COl₄	CD ₃ OD, N _{2,} 24 h		- 〈
1.5 equiv	White CFL		

Alkene	[Alkene]	Mol%	1Q		2	2Q 3C		BQ		ΤΡΜΑ	
		cat.	%Con.	%Yield (TON)	%Con.	%Yield	%Con.	%Yield	%Con.	%Yield (TON)	
	1.0	1.0	100	100 (100)	100	100	65	65	71	71 (100)	
Ĺ	3.0	0.3	94	89 (267)					19	13 (39)	
	3.0	0.1	27	17 (170)							
	4.8	0.1	37	16 (160)					7	4 (40)	
\downarrow .0.	1.0	1.0	95	95	99	99	54	53	73	73	
	3.0	0.3	99	95 (285)							
	1.0	1.0	89	88	71	66	17	14	66	64	
* CN	3.0	0.3	86	83 (249)							
	1.0	1.0	90	88	68	64	0	0	64	63	
0 	3.0	0.3	90	80 (240)							
	1.0	1.0	96	91					98	96	

Table S6Substrate conversions and product yields for reactions of styrene with various alkyl halides inmethanol with and without AIBN

Alkyl halide	With AIB	N (5 mol %)	Witl	hout AIBN
(equiv)	%Con	% Yield	%Con	% Yield
CBr ₄	100	98	100	99
CBrCl₃	100	100	100	100
CCl₃COOMe	100	100	100	100
CCl₃CN	100	94	100	90
CHCl ₃ ª	100	100	54	53
CHBr₃ª	75	74	51	49

^aThe reactions were performed under white CFL at ambient temperature for 24h ^a3.0 equivalent of alkyl halide was used.

Table S7Comparison of alkyl chloride with alkyl bromide in the addition reaction to alkenes in the
absence of photocatalyst under white light

Entry	Alkene	R-X	Solvent	%Con	%Yield
1	Styrene	CBr ₄	CD₃OD	68	58
2	1 <i>H</i> -Indene	CBr ₄	<i>i</i> -PrOH	100	90
3	Methyl methacrylate	CBr ₄	CD₃OD	70	0
4	Styrene	CCl ₄	CD₃OD		N.R.
5	1 <i>H</i> -Indene	CCl ₄	CH₃OH		N.R.
6	1 <i>H</i> -Indene	CCl₃COOMe	CH₃OH		N.R.
7	1 <i>H</i> -Indene	CCl₃CN	CH₃OH		N.R.

^aThe reactions were performed under white CFL at ambient temperature for 24h

Addition of terminal alkenes with CBrCl₃

The addition of the mixed halide reagent, CBrCl₃, to each of these alkenes gave a mixture of products containing CCl₃/Br groups (major product, >50% yield, Fig. S7-S9) and CCl₂Br/Cl groups as well as their 2 crossover products in excellent total yield. These results indicated the competition between C-Cl and C-Br bond dissociation. The proposed mechanism to explain the formations of all products by adding more details of bond dissociation and formation pathways after the SET process is shown in Fig. S10. The formation of the major product is related to the C-Br bond dissociation which can occur either via the direct photolysis or the SET process. The incorporation of Br group in the major product can also occur either via the reductive elimination or Br abstraction routes. On the other hand, the formation of the minor products can occur only via the SET process and the incorporation of Cl group can occur only via the reductive elimination route. The low chemoselectivity for the addition of CBrCl₃ to these electron deficient alkenes was very different from the reaction of styrene which gave only a single product resulting from the C-Br bond dissociation and Br abstraction. We hypothesized that reducing the amount of copper catalyst, to limit the C-Cl bond dissociation, might increase the chemoselectivity of the reaction. Indeed, when the catalyst amount was reduced from 1 to 0.3 mol%, the chemoselectivity of the reaction was vastly improved that only 2da-4da resulting from CCl₃/Br addition were obtained in excellent yields. On the other hand, the increase of catalyst amount to 3.0 mol% slightly decrease the chemoselectivity of the reaction (Fig. S11). It is also important to point out that the addition of CBrCl₃ to these electron deficient alkenes did not proceed in the absence of the copper catalyst unlike the addition to styrene. The copper catalyst may thus also have an essential role in either alkene activation or intermediate stabilization, besides the SET activation of C-X bond dissociation.

Fig. S7. ¹H NMR spectra of crude product, after flash column chromatography, from reaction between acrylonitrile and CBrCl₃ in CD₃OD, in the presence of toluene internal standard

• Spectrum for 96% conversion and 94% yield, calculated from ¹H NMR integrations of all alkene protons (red), aliphatic protons of product (black) and methylene protons of toluene (pink).

• Spectrum for product ratio determination based on 94% yield, calculated from ¹H NMR integrations of aliphatic protons of each addition product.

- **Fig. S8.** ¹H NMR spectra of crude product, after flash column chromatography, from reaction between methyl acrylate and CBrCl₃ in CD₃OD, in the presence of toluene internal standard
 - Spectrum for 96% conversion and 95% yield, calculated from ¹H NMR integrations of all alkene protons (red) and aliphatic protons of product (black)

• Spectrum for product ratio determination based on 95% yield, calculated from ¹H NMR integrations of aliphatic protons of each addition product

Fig. S9. ¹H NMR spectra of crude product, after flash column chromatography, from reaction between methyl methacrylate and CBrCl₃ in CD₃OD, in the presence of toluene internal standard

• Spectrum for 100% conversion and 97% yield, calculated from ¹H NMR integrations of aliphatic protons of product (black) and methylene protons of toluene (pink).

• Spectrum for product ratio determination based on 97% yield, calculated from ¹H NMR integrations of aliphatic protons of each addition product

Fig. S10. Proposed mechanism for reaction of terminal alkene with CBrCl₃ catalyzed by Cu(II)-ligand complex

Fig. S11. ¹H NMR spectra of crude products, after flash column chromatography, from reactions between methyl methacrylate and CBrCl₃ using 0-3 mol % of catalyst loading, in the presence of toluene internal standard

Substitution reaction

Scheme S1 Copper catalyzed ATRAs of various alkyl halide to internal alkenes. Isolated yields are given. ^a1.4014 g of product was isolated after 48 h of a reaction at 5 mmol scale.

Scheme S2 Substitution reaction test of halide product in methanol

NOESY-NMR analysis

Evidence for generation from Cu(II) via XAT process in the presence of AIBN

The *in situ* generated complexes of $CuCl_2$ -1Q in the presence and absence of AIBN in CD_2Cl_2 showed no observable signals corresponding to the complex (Figure S14) mainly due to the paramagnetic nature of Cu(II) ion. In the absence of AIBN, the ¹H NMR spectrum after 7 hours of white light irradiation showed similar pattern of the Cu(I) complex but not at the same chemical shifts implying that another form of Cu(I) complex was generated. In the presence of AIBN, the irradiation gave a ¹H NMR signals at the same position with those of *insitu* generated Cu(I) complex. It is also interesting to note that stronger and cleaner signals of the Cu(I) complex from Cu(II) complex. Furthermore, the ¹H NMR signals in the aliphatic region corresponding to AIBN showed a new signal at 1.90 ppm corresponding to $Cl(CH_3)_2CN$ (Jamey K. Bower, et. al. *J. Am. Chem. Soc.* **2020**, 142, 8514–8521) that can confirm the role of AIBN in the halogen abstractor process.

Fig. S14. The ¹H NMR spectra for Cu(I) complex generation from Cu(II) complex.

The EPR spectrum of *in situ* generated $CuCl_2$ -**1Q** complexes in the presence and absence of AIBN in dried CH_3CN were investigated in comparison with CuCl-**1Q**. In the presence of AIBN, the decrease of Cu(II) complex signal after irradiation confirmed the generation of Cu(I) complex. In the absence of AIBN, the Cu(II) complex spectrum shows less change of the signal. The EPR results thus agree well with the ¹H NMR results.

Fig. S15. The EPR spectra for Cu(I) complex generation from Cu(II) complex.

Spectroscopic data of products

CCI₃

 \cap

B

C

(1,3,3,3-tetrachloropropyl)benzene, 1a ¹H NMR (400 MHz, CD₃CN) δ 7.57 – 7.45 (m, 2H), 7.45 – 7.33 (m, 3H), 5.42 (t, *J* = 6.0 Hz, 1H), 3.75 – 3.61 (m, 2H). ¹³C NMR (101 MHz, Acetone) δ 140.67, 128.86, 128.82, 127.60, 96.47 61.89, 58.40.

(1,3,3,3-tetrabromopropyl)benzene, 1b ¹**H NMR** (400 MHz, DMSO) δ 7.64 (d, *J* = 7.5 Hz, 2H), 7.44 – 7.32 (m, 3H), 5.45 (dd, *J* = 7.7, 3.9 Hz, 1H), 4.24 (dd, *J* = 15.8, 7.7 Hz, 1H), 4.08 (dd, *J* = 15.8, 3.9 Hz, 1H). ¹³**C NMR** (101 MHz, DMSO) δ 141.45, 129.28, 129.19, 128.73, 65.28, 51.45, 36.52.

(1-bromo-3,3,3-trichloropropyl)benzene, 1c ¹**H NMR** (400 MHz, DMSO) δ 7.62 (d, *J* = 7.3 Hz, 2H), 7.42 – 7.31 (m, 3H), 5.58 (dd, *J* = 8.0, 4.6 Hz, 1H), 4.00 (dd, *J* = 15.5, 8.0 Hz, 1H), 3.82 (dd, *J* = 15.5, 4.6 Hz, 1H). ¹³**C NMR** (101 MHz, DMSO) δ 141.24, 129.28, 129.15, 128.47, 97.40, 61.35, 48.79.

Methyl-2,2,4-trichloro-4-phenylbutanoate, 1d ¹**H NMR** (400 MHz, DMSO) δ 7.54 – 7.47 (m, 2H), 7.39 (qd, J = 8.0, 7.1, 4.0 Hz, 3H), 5.38 (dd, J = 7.5, 6.0 Hz, 1H), 3.69 (d, J = 1.1 Hz, 3H), 3.48 (ddd, J = 15.1, 7.6, 1.0 Hz, 1H), 3.36 – 3.27 (m, 2H). ¹³**C NMR** (101 MHz, DMSO) δ 165.44, 140.05, 129.38, 129.15, 128.05, 82.98, 59.10, 55.09, 52.91.

2,2,4-trichloro-4-phenylbutanenitrile, 1e ¹**H NMR** (500 MHz, CHLOROFORM-D) δ 7.55 – 7.36 (m, 1H), 5.22 (t, J = 6.7 Hz, 0H), 3.37 (dd, J = 15.1, 7.1 Hz, 0H), 3.22 (dd, J = 15.1, 6.4 Hz, 0H). ¹³**C NMR** (126 MHz, CHLOROFORM-*D*) δ 138.74, 129.74, 129.30, 127.62, 114.55, 66.15, 57.58, 55.97.

(1,3,3-trichloropropyl)benzene, 1f ¹H NMR (400 MHz, DMSO) δ 7.54 (d, *J* = 6.8 Hz, 2H), 7.41 (m, 3H), 6.20 (dd, *J* = 8.5, 4.6 Hz, 1H), 5.24 (dd, *J* = 9.6, 4.7 Hz, 1H), 3.17-3.09 (m, 1H), 2.92 – 2.85 (m, 1H). ¹³C NMR (101 MHz, DMSO) δ 139.94, 129.41, 129.30, 127.83, 71.95, 60.13, 51.34.

(1,3,3-tribromopropyl)benzene, 1g ¹**H NMR** (500 MHz, CDCl₃) δ 7.42 – 7.32 (m, 5H), 5.63 (dd, *J* = 8.1, 5.8 Hz, 1H), 5.11 (dd, *J* = 8.9, 5.7 Hz, 1H), 3.28 (ddd, *J* = 14.8, 9.0, 5.7 Hz, 1H), 3.07 (ddd, *J* = 15.2, 8.0, 5.7 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 139.61, 129.22, 129.20, 127.55, 53.94, 51.58, 42.42.

2,4,4,4-tetrachlorobutanenitrile, **2a** ¹**H NMR** (500 MHz, CHLOROFORM-*D*) δ 4.86 (dd, *J* = 8.6, 4.0 Hz, 1H), 3.60 (dd, *J* = 15.2, 8.6 Hz, 1H), 3.35 (dd, *J* = 15.2, 4.1 Hz, 1H). ¹³**C NMR** (126 MHz, CHLOROFORM-*D*) δ 115.87, 93.82, 77.44, 77.38, 77.18, 76.93, 59.17, 37.96.

2,4,4,4-tetrabromobutanenitrile, **2b**, the isolated product was obtained as a clear oil (446.07 mmol, 0.1716 g, 88% yield). ¹**H NMR** (500 MHz, CHLOROFORM-*D*) δ 4.65

CHBr₂

(ddd, *J* = 9.3, 3.1, 0.6 Hz, 1H), 3.97 (ddd, *J* = 15.5, 9.2, 0.6 Hz, 1H), 3.75 (ddd, *J* = 15.5, 3.1, 0.6 Hz, 1H). ¹³**C NMR** (126 MHz, CHLOROFORM-*D*) δ 116.40, 63.18, 31.84, 22.98.

Methyl 2,2,4-trichloro-4-cyanobutanoate, 2c ¹**H NMR** (500 MHz, CHLOROFORM-*D*) δ 4.83 (dd, *J* = 8.0, 5.5 Hz, 1H), 3.94 (s, 3H), 3.35 (dd, *J* = 15.1, 8.0 Hz, 1H), 3.19 (dd, *J* = 15.1, 5.5 Hz, 1H). ¹³**C NMR** (126 MHz, CHLOROFORM-*D*) δ 165.00, 115.87, 79.36, 55.13, 50.16, 37.96.

2-bromo-4,4,4-trichlorobutanenitrile, 2d ¹**H NMR** (500 MHz, CHLOROFORM-*D*) δ 4.68 (ddd, *J* = 9.7, 3.5, 0.6 Hz, 1H), 3.64 (ddd, *J* = 15.0, 9.7, 0.6 Hz, 1H), 3.41 (ddd, *J* = 15.0, 3.5, 0.6 Hz, 1H). ¹³**C NMR** (126 MHz, CHLOROFORM-*D*) δ 116.24, 94.65, 59.41, 20.23.

Methyl-2,4,4,4-tetrachlorobutanoate, 3a ¹**H NMR** (500 MHz, CHLOROFORM-*D*) δ 4.60 (dd, *J* = 8.0, 3.7 Hz, 1H), 3.81 (s, 3H), 3.75 (dd, *J* = 15.2, 8.0 Hz, 1H), 3.21 (dd, *J* = 15.2, 3.7 Hz, 1H). ¹³**C NMR** (126 MHz, CHLOROFORM-*D*) δ 168.85, 95.45, 58.32, 53.63, 51.52.

Methyl-2,4,4,4-tetrabromobutanoate, 3b, the isolated product was obtained as a clear oil (429.71.07 mmol, 0.1795 g, 85% yield). ¹H NMR (500 MHz, CHLOROFORM-*D*) δ 4.48 (dd, *J* = 9.1, 2.3 Hz, 1H), 4.20 (dd, *J* = 15.5, 9.1 Hz, 1H), 3.80 (s, 3H), 3.63 (dd, *J* = 15.6, 2.3 Hz, 1H). ¹³C NMR (126 MHz, CHLOROFORM-*D*) δ 169.36, 62.47, 53.71, 40.09, 34.53.

Dimethyl-2,2,4-trichloropentanedioate, 3c ¹**H NMR** (500 MHz, CHLOROFORM-*D*) δ 4.64 – 4.57 (m, 1H), 3.88 (d, *J* = 0.5 Hz, 3H), 3.80 (d, *J* = 0.5 Hz, 3H), 3.37 (dd, *J* = 15.3, 6.8 Hz, 1H), 3.10 (dd, *J* = 15.3, 5.8 Hz, 1H).¹³**C NMR** (126 MHz, CHLOROFORM-*D*) δ 168.96, 165.66, 81.02, 54.85, 53.58, 52.01, 49.06.

Methyl-2-bromo-4,4,4-trichlorobutanoate, 3d ¹**H NMR** (500 MHz, CHLOROFORM-*D*) δ 4.55 (ddd, *J* = 9.4, 2.7, 0.6 Hz, 1H), 3.85 (dd, *J* = 15.2, 9.4 Hz, 0H), 3.79 (s, 2H), 3.28 (dd, *J* = 15.2, 2.7 Hz, 1H). ¹³**C NMR** (126 MHz, CHLOROFORM-*D*) δ 169.37, 96.10, 58.54, 53.61, 37.75.

Methyl-2,4,4,4-tetrachloro-2-methylbutanoate, **4a** ¹**H NMR** (500 MHz, CHLOROFORM-*D*) δ 3.98 (d, *J* = 15.3 Hz, 1H), 3.81 (d, *J* = 0.7 Hz, 3H), 3.45 (dd, *J* = 15.3, 0.6 Hz, 1H), 2.00 (s, 3H). ¹³**C NMR** (126 MHz, CHLOROFORM-*D*) δ 170.22, 94.66, 64.67, 62.30, 53.64, 26.41.

Methyl-2,4,4,4-tetrabromo-2-methylbutanoate, 4b, the isolated product was obtained as a clear oil (499.36 mmol, 0.2156 g, 99% yield). ¹**H NMR,** (500 MHz, CHLOROFORM-*D*) δ 4.64 (d, *J* = 15.5 Hz, 1H), 3.88 (d, *J* = 15.5 Hz, 1H), 3.80 (d, *J* = 0.7 Hz, 3H), 2.23 (s, 3H). ¹³**C NMR** (126 MHz, CHLOROFORM-*D*) δ 170.55, 65.91, 57.59, 53.65, 31.46, 26.26.

Dimethyl-2,2,4-trichloro-4-methylpentanedioate, 4c, the isolated product was obtained as a clear oil (4.0125 mol, 1.1136 g, 79% yield). ¹H NMR (500 MHz, CHLOROFORM-*D*) δ 3.87 (s, 3H), 3.78 (s, 3H), 3.53 (d, *J* = 15.2 Hz, 1H), 3.42 (dd, *J* = 15.1, 0.6 Hz, 1H), 1.79 (s, 3H). ¹³C NMR (126 MHz, CHLOROFORM-*D*) δ 170.72, 166.02, 80.76, 65.39, 54.84, 53.69, 28.20.

Methyl-2-bromo-4,4,4-trichloro-2-methylbutanoate, 4d ¹**H NMR** (500 MHz, CHLOROFORM-*D*) δ 4.20 (d, *J* = 15.3 Hz, 1H), 3.79 (s, 3H), 3.54 (d, *J* = 15.3 Hz, 1H), 2.18 (s, 3H). ¹³**C NMR (126 MHz, CHLOROFORM-***D***) δ** 170.67, 95.14, 62.76, 55.39, 53.60, 26.63.

CBr₃

anti-1-chloro-2-(trichloromethyl)-2,3-dihydro-1H-indene, 5a ¹H NMR (500 MHz, CHLOROFORM-*D*) δ 7.50 – 7.38 (m, 1H), 7.33 (td, *J* = 4.0, 1.1 Hz, 2H), 5.64 (dd, *J* = 4.3, 1.0 Hz, 1H), 3.94 (dddd, *J* = 9.9, 5.3, 4.3, 0.8 Hz, 1H), 3.59 (ddd, *J* = 17.2, 9.2, 1.0 Hz, 1H), 3.34 (ddd, *J* = 17.3, 5.6, 1.0 Hz, 1H). ¹³C NMR (126 MHz, CHLOROFORM-*D*) δ 141.23, 140.09, 129.65, 128.02, 125.75, 124.60, 101.43, 69.45, 64.07, 36.19.

anti-1-bromo-2-(tribromomethyl)-2,3-dihydro-1*H*-indene, 5b, the isolated product was obtained as a clear oil (0.2358 mol, 0.1056 g, 47% yield). ¹H NMR (500 MHz, CHLOROFORM-*D*) δ 7.46 – 7.40 (m, 1H), 7.31 – 7.27 (m, 2H), 7.25 – 7.20 (m, 1H), 5.64 (dd, J = 3.0, 0.8 Hz, 1H), 4.20 (ddd, J = 9.1, 3.9, 3.0 Hz, 1H), 3.59 (ddt, J = 17.6, 9.1, 0.7 Hz, 1H), 3.32 – 3.18 (m, 1H). ¹³C NMR (126 MHz, CHLOROFORM-*D*) δ 141.30, 141.01, 129.31, 127.34, 125.43, 124.84, 88.62, 67.99, 46.96, 38.35.

Br

anti-1-methoxy-2-(tribromomethyl)-2,3-dihydro-1*H*-indene, 5'b, the isolated product was obtained as a clear oil (0.2193 mol, 0.0875 g, 43% yield). ¹H NMR (500 MHz, CHLOROFORM-*D*) δ 7.42 (d, *J* = 7.4 Hz, 1H), 7.37 – 7.20 (m, 4H), 5.00 (d, *J* = 3.4 Hz, 1H), 3.74 (ddd, *J* = 8.9, 5.0, 3.5 Hz, 1H), 3.54 (s, 3H), 3.45 (ddd, *J* = 17.3, 8.8, 1.0 Hz, 1H), 3.09 (dd, *J* = 17.4, 5.0 Hz, 1H). ¹³C NMR (126 MHz, CHLOROFORM-*D*) δ 141.31, 140.97, 129.31, 127.33, 125.43, 124.83, 88.70, 67.95, 56.51, 46.92, 38.33.

anti-methyl-2,2-dichloro-2-1-chloro-2,3-dihydro-1*H*-inden-2-yl)acetate, 5c ¹H NMR (500 MHz, CHLOROFORM-*D*) δ 7.42 – 7.39 (m, 1H), 7.31 – 7.28 (m, 2H), 7.23 – 7.19 (m, 1H), 5.55 (d, *J* = 5.0 Hz, 1H), 3.92 (d, *J* = 0.6 Hz, 3H), 3.83 (dddd, *J* = 9.0, 6.1, 5.0, 0.6 Hz, 1H), 3.49 (ddd, *J* = 16.8, 9.2, 0.8 Hz, 1H), 3.16 (dd, *J* = 16.8, 6.2 Hz, 1H). ¹³C NMR (126 MHz, CHLOROFORM-*D*) δ 165.84, 141.37, 140.01, 129.45, 127.88, 125.49, 124.57, 86.47, 63.15, 61.18, 54.77, 35.00.

anti-methyl-2,2-dichloro-2-1-methoxy-2,3-dihydro-1*H*-inden-2-yl)acetate, 5'c ¹H NMR (500 MHz, CHLOROFORM-*D*) δ 7.38 (ddd, *J* = 7.3, 1.4, 0.8 Hz, 1H), 7.37 – 7.17 (m, 4H), 5.08 (d, *J* = 4.7 Hz, 1H), 3.88 (s, 3H), 3.52 (ddd, *J* = 8.9, 6.0, 4.6 Hz, 1H), 3.46 (s, 3H), 3.41 – 3.32 (m, 1H), 3.01 (dd, *J* = 16.7, 6.0 Hz, 1H).¹³C NMR (126 MHz, CHLOROFORM-*D*) δ 166.42, 141.17, 141.02, 129.05, 127.23, 124.97, 124.89, 87.06, 86.26, 56.74, 56.42, 54.60, 34.11.

anti-1-bromo-2-(trichloromethyl)-2,3-dihydro-1*H*-indene, 5d, the isolated product was obtained as a clear oil (2.3754 mmol, 0.7469 g, 48% yield). ¹H NMR (500 MHz, CHLOROFORM-*D*) δ 7.50 – 7.39 (m, 1H), 7.36 – 7.27 (m, 3H), 7.25 – 7.17 (m, 2H), 5.79 (d, J = 3.4 Hz, 2H), 4.07 (ddd, J = 9.3, 4.4, 3.4 Hz, 1H), 3.63 (dd, J = 17.4, 9.3 Hz, 2H), 3.38 (dd, J = 17.5, 4.4 Hz, 2H). ¹³C NMR (126 MHz, CHLOROFORM-*D*) δ 141.99, 140.47, 129.60, 128.05, 126.11, 124.59, 101.67, 69.53, 53.15, 36.03.

anti-1-methoxy-2-(trichloromethyl)-2,3-dihydro-1*H*-indene, 5'd, the isolated product was obtained as a clear oil (1.2634 mmol, 0.3355 g, 25% yield). ¹H NMR (500 MHz, CHLOROFORM-*D*) δ 7.45 – 7.40 (m, 1H), 7.36 – 7.24 (m, 3H), 5.14 (t, *J* = 3.7 Hz, 1H), 3.60 (dtd, *J* = 8.6, 5.0, 3.4 Hz, 1H), 3.57 – 3.52 (m, 3H), 3.52 – 3.45 (m, 1H), 3.23 (dt, *J* = 17.4, 4.2 Hz, 1H). ¹³C NMR (126 MHz, CHLOROFORM-*D*) δ 141.26, 140.98, 129.31, 127.34, 125.36, 124.80, 87.39, 65.34, 56.68, 35.76.

anti-2,2-dichloro-2-1-chloro-2,3-dihydro-1*H*-inden-2-yl)acetonitrile, 5e, the isolated product was obtained as a clear oil (0.3861 mol, 1.1006 g, 76% yield). ¹H NMR (500 MHz, CHLOROFORM-*D*) δ 7.48 – 7.41 (m, 1H), 7.34 (dq, *J* = 5.2, 1.7 Hz, 2H), 7.30 – 7.25 (m, 1H), 5.58 (dd, *J* = 5.0, 1.7 Hz, 1H), 3.77 – 3.63 (m, 1H), 3.58 (dd, *J* = 16.8, 9.1 Hz, 1H), 3.27 (dd, *J* = 16.9, 6.2 Hz, 1H). ¹³C NMR (126 MHz, CHLOROFORM-*D*) δ 140.69, 138.95, 129.94, 128.38, 125.65, 124.69, 114.67, 70.65, 63.25, 62.27, 34.90.

anti-1-chloro-2-(trichloromethyl)-1,2,3,4-tetrahydronaphthalene, 6a, the isolated product was obtained as a clear oil (172.88 mmol, 0.0491 g, 34% yield). ¹H NMR (500 MHz, CHLOROFORM-*D*) δ 7.34 (dd, J = 7.2, 1.9 Hz, 1H), 7.25 (td, J = 7.3, 1.7 Hz, 2H), 7.18 (dd, J = 6.8, 1.8 Hz, 1H), 5.52 (d, J = 1.9 Hz, 1H), 3.68 (ddd, J = 9.2, 7.0, 1.9 Hz, 1H), 3.03 (ddd, J = 15.7, 11.8, 4.2 Hz, 1H), 2.87 (dt, J = 15.4, 4.7 Hz, 1H), 2.66 (ddt, J = 13.7, 7.0, 4.6 Hz, 1H), 1.91 – 1.81 (m, 1H). ¹³C NMR (126 MHz, CHLOROFORM-*D*) δ 138.79, 136.04, 129.48, 128.95, 128.13, 127.20, 102.55, 64.33, 57.65, 26.86, 26.75.

anti-1-methoxy-2-(trichloromethyl)-1,2,3,4-tetrahydronaphthalene, 6'a, the isolated product was obtained as a clear oil (115.88 mmol, 0.0324 g, 23% yield). ¹H NMR (500 MHz, CHLOROFORM-*D*) δ 7.29 – 7.25 (m, 2H), 7.23 – 7.18 (m, 2H), 4.59 (d, *J* = 1.8 Hz, 1H), 3.31 (ddd, *J* = 10.2, 7.1, 1.9 Hz, 1H), 3.20 (s, 3H), 2.89 (dddd, *J* = 12.8, 11.8, 4.2, 2.4 Hz, 1H), 2.71 (dt, *J* = 14.8, 4.0 Hz, 1H), 2.54 (ddt, *J* = 13.2, 7.5, 3.9 Hz, 1H), 1.68 (tdd, *J* = 13.1, 10.2, 4.0 Hz, 1H). ¹³C NMR (126 MHz, CHLOROFORM-*D*) δ 140.14, 134.67, 130.23, 128.54, 127.82, 126.13, 103.38, 79.94, 62.02, 55.56, 27.59, 27.34.

anti-1-methoxy-2-(tribromomethyl)-1,2,3,4-tetrahydronaphthalene, 6'b ¹H NMR (500 MHz, CHLOROFORM-*D*) δ 7.29 – 7.25 (m, 2H), 7.21 (t, *J* = 6.7 Hz, 2H), 4.53 – 4.45 (m, 1H), 3.48 – 3.39 (m, 1H), 3.20 (d, *J* = 0.9 Hz, 3H), 2.98 – 2.90 (m, 1H), 2.75 – 2.64 (m, 2H). ¹³C NMR (126 MHz, CHLOROFORM-*D*) δ 140.41, 134.78, 130.54, 128.62, 127.70, 126.07, 81.68, 64.96, 55.53, 49.32, 30.17, 27.49.

¹H NMR and ¹³C spectra

Fig. S16. ¹H NMR spectrum of 8-iodoquinoline

149.09
147.02
147.03
147.03
147.03
147.03
147.03
147.03
128.67
128.67
128.13
127.13
127.13
127.14
127.14
127.14
127.14
127.15
114.02
114.02
115.03
105.03

S27

Fig. S22. ¹H NMR spectrum of *N*-(pyridin-2-ylmethyl)-*N*-(quinolin-8-yl)quinolin-8-amine, 2Q

Fig. S27. ¹H-¹H COSY NMR spectrum of *in situ* CuCl and **1**Q

¹H NMR spectrum of *in situ* CuCl and **3Q**

b,e

df

7.5

7.0 f1 (ppm)

С

0.98 I

8.0

8.5

2022-04-23-PCH001CP3Q

а

0.92 I

9.0

9.5

10.0

5.32 CD2Cl2

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

80 70 60 50 40 30 20 10 0

— 65.28	51.45	— 36.52
	— 65.28	65.28 51.45

¹H NMR spectrum of (1-bromo-3,3,3-trichloropropyl)benzene, **1d**.

S36

Fig. S41. ¹³C NMR spectrum of (1,3,3-trichloropropyl)benzene, 1f.

Fig. S43. ¹³C NMR spectrum of (1,3,3-tribromopropyl)benzene, 1g.

--53.94 --51.58 --42.42

Fig. S46. 2020-12-28-PCH103_T3

¹H NMR spectrum of 2,4,4,4-tetrabromobutanenitrile, **2b**.

Fig. S48. ¹H NMR spectrum of methyl 2,2,4-trichloro-4-cyanobutanoate, 2c.

Fig. S50. ¹H NMR spectrum of 2-bromo-4,4,4-trichlorobutanenitrile, 2d 2021-11-05_PCH123_T6_P -4.70 -4.69 -4.68 -4.67 b а Br Name Shift H's Class J's Integral CN 1 4.68 1 1.01 dd 3.5, 9.7 a 2 9.7, 15.2 b 3.63 1 1.00 dd 2d 3 b' 3.41 1 0.98 3.5, 15.2 dd b b' а CHCl₃ H_2O ** F00.1 1-86.0 -10.1 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 f1 (ppm) * by-product see Fig.S7, **toluene was used as an internal standard ¹³C NMR spectrum of 2-bromo-4,4,4-trichlorobutanenitrile, 2d. Fig. S51. 2021-11-05_PCH123_T6_P -116.27 --94.66 -20.27 --59.36 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ò f1 (ppm)

Fig. S53. ¹³C NMR spectrum of methyl 2,4,4,4-tetrachlorobutanoate, **3a**.

f1 (ppm) ć

¹H NMR spectrum of dimethyl 2,2,4-trichloropentanedioate, **3c**.

2021-11-05_PCH123_T5_P

* by-product see Fig.S8, **toluene was used as an internal standard

Fig. S59. ¹³C NMR spectrum of methyl-2-bromo-4,4,4-trichlorobutanoate, **3d.**

2021-11-05_PCH123_T5 _P 8 1			53.65 37.75
--	--	--	----------------

Fig. S64. ¹H NMR spectrum of dimethyl 2,2,4-trichloro-4-methylpentanedioate, 4c.

Fig. S65. ¹³C NMR spectrum of dimethyl 2,2,4-trichloro-4-methylpentanedioate, 4c.

Fig. S73. ¹³C NMR spectrum of *anti*-1-methoxy-2-(tribromomethyl)-2,3-dihydro-1H-indene, **5'b**.

S53

¹H NMR spectrum of *anti*-methyl 2,2-dichloro-2-(1-methoxy-2,3-dihydro-1H-inden-2-Fig. S76. yl)acetate, 5'c. 202 -single_pulse

~87.06 ~86.26

56.74 56.42 54.60

-34.11

7,739 7,739 7,739 7,737 7,737 7,737 7,737 7,737 7,738 7,739 7,738 7,739 7,739 7,728 7,729

170 160 150 140 130 120 110 100 f1 (ppm)

90 80 70 60 50 40 30 20 10 ò -10 -20

141.17
141.02
141.02
129.05
127.23
-124.97
124.89

-166.42

220 210 200 190 180

S56

Fig. S83.¹³C NMR spectrum of anti-2,2-dichloro-2-(1-chloro-2,3-dihydro-1*H*-inden-2-yl) acetonitrile,
5b.

-70.65 _____63.25 _____62.27

2020-12-21-PCH099-T7-P	

~ 140.69 ~ 138.95 -129.94 -128.38 -125.65 -124.69 -114.67

S58

f1 (ppm)

S60

1. A. J. Clark, D. P. Curran, D. J. Fox, F. Ghelfi, C. S. Guy, B. Hay, N. James, J. M. Phillips, F. Roncaglia, P. B. Sellars, P. Wilson and H. Zhang, *J. Org. Chem.*, 2016, **81**, 5547-5565.